GPD 505 Technical Manual

 also available on

GPD 505 SIMPLIFIED START-UP PROCEDURE

This procedure will quickly get you up and running using the Digital Operator keypad or a user supplied remote operator control. It assumes that the GPD 505 and motor are correctly wired (see pages 1-12 thru 1-15), and start-up is to be performed without any changes to factory set parameters. Detailed information on the many other features of this drive will be found in later sections of this manual.

INSTALLATION

1. Be certain your input voltage source, motor, and drive name plates are all marked either 230 V or 460 V . Other voltages can be used, but require additional programming; see Section 5.
2. Mount drive on a vertical surface with adequate space for air circulation.
3. Remove front cover with Digital Operator, fit conduit to bottom plate, and connect power and ground wires as shown.

Be certain you connect input power to terminals L1, L2, and L3 only, or serious damage will result. Connect motor to terminals T1, T2, and T3 only.

KEYPAD OPERATION

1. Replace front cover and Digital Operator and apply input power - Keypad display shows " 0.0 "; REMOTE SEQ \& REF LEDS and STOP/RESET LED are on, and Fref Function LED is lit.
2. Select LOCAL Mode by pressing LOCAL/REMOTE key - REMOTE SEQ \& REF LEDs will go out.
3. Enter Frequency Reference - Pressing the "up arrow" key will increase displayed frequency value; pressing the "down arrow" will decrease the displayed value. Increase the frequency reference display to " 6.0 " (Hz). Press the ENTER key to store or write this value to the drive.
4. View the Drive Output Frequency - Press the DSPL key once. The Fref Function LED will go out, and the Fout Function LED will turn on.
5. Run Forward - Press the RUN key. The motor should run at 10% ($6 / 60$) of its base speed; the RUN LED will turn on, and the STOP/RESET LED will go out.
NOTE: If the direction of motor rotation is incorrect, press the STOP/RESET key. When motor has stopped, remove power, wait for the "CHARGE" light to go out, remove the drive cover and switch the motor leads at terminals T1 \& T2. Replace drive cover and re-apply input power.
6. Change Frequency - Press the DSPL key repeatedly until the Fref Function LED turns on. A new frequency reference can be set by using the "up arrow" and "down arrow" keys as in step 3. Note that the drive responds to each new value only after the ENTER key is pressed (unless parameter n009 is set to " 0 ", in which case the ENTER key-press is not needed).
7. Reversing - can be selected either while stopped or while running. With the drive stopped, press the DSPL key repeatedly until the F / R Function LED turns on, then press the ENTER key. Display will read " For". Press either the "up arrow" or "down arrow" key to toggle this display to " rEu", for reverse motor operation. Then press ENTER again to store the new selection. If the drive is running when this change is entered, the drive will decelerate the motor to 0 Hz , then accelerate the motor to the same speed in the opposite direction. This can be done while running, provided your machine can be operated in reverse direction without damage.
8. Displays - With the drive stopped, each time the DSPL key is pressed, a different function display appears (as indicated by the Function LED which is turned on). The first function on power-up is the FrefLED and " $\mathbf{0 . 0}$ " display, discussed above. Press DSPL, and the Fout LED turns on and Fref goes out; the display now shows output frequency (speed). The next function is lout, and indicates drive output current (in Amps). For more information, refer to Section 4 of this manual.
9. Faults - If an unacceptable operating condition such as code Ou (overvoltage), Uu (undervoltage), OC (overcurrent), etc. occurs, the drive will trip, and the motor will coast to a stop. The appropriate fault code will be displayed. Examine the fault code; then consult Sections 6 \& 7 for fault correction procedure.

INSTALLATION OF EXTERNAL RUN/STOP SWITCH AND SPEED POTENTIOMETERS

IMPORTANT: Complete the INSTALLATION and KEYPAD OPERATION instructions before attempting external control.

1. Disconnect power, remove drive front cover with Digital Operator, and wait for "CHARGE" light to go out.
2. Refer to the diagram below and connect a switch to terminals S1 and SC using two conductor shielded wire. This circuit is 24 Vdc , very low current; use a quality rotary or toggle switch (all wire should be $16-20 A W G$). Connect the shield to terminal G on the drive end only.

3. Connect a manual speed potentiometer rated 2000-3000 ohms, 1 watt minimum, using three conductor shielded wire, with shield connected at terminal G. Connect wires to the potentiometer as shown, viewing potentiometer from the back. Trace wire shown closest to the top in diagram (right side of potentiometer) and connect to terminal FC. Trace center wire of potentiometer through and connect to terminal FV. The remaining wire will be connected to the trim pot in step 4.
4. Connect a trim potentiometer rated 2000-3000 ohms, 1 watt minimum, as close to the drive terminals as possible. Viewing the potentiometer from the back, connect a single conductor wire from the left terminal to terminal FS of the drive. Connect a short jumper wire between the center and right terminals. Connect remaining wire from manual speed pot as shown.
5. Replace drive front cover and Digital Operator. Make sure remote switch S1 is in "Stop" position, then apply power. Note that the STOP lamp is on. Press LOCAL/REMOTE key, so that the REMOTE SEQ \& REF LEDs turn on.
6. Calibrate manual speed pot for maximum speed at maximum rotation. With switch S 1 in the "Stop" position, press DISPL key repeatedly until the Fref LED turns on. The display will indicate the combined setting of the trim and manual speed pots; it should read " 60.0 " with both pots (as viewed from the back) turned to their fully CW (maximum) settings. Turn the trim pot slowly (CCW) until the Fref display begins to decrease, then turn it back just enough to display " 60.0 ". Now the display should decrease as soon as the manual speed pot is turned slightly CCW.
7. Press DISPL key repeatedly until the Fout LED turns on. Turn switch S1 to "Run", and adjust motor speed with manual speed pot.

efesotomasyon.com

QUICK REFERENCE FOR GPD 505 PARAMETERS (FACTORY SET)

PARAMETER NUMBER (7)	FACTORY SETTING	USER SETTING	PARA. REF.
$\begin{aligned} & \text { n001 } \\ & \text { n002 } \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$		$\begin{gathered} 5.23 \\ \text { p. A1-1 } \end{gathered}$
n003	$\begin{gathered} 230.0 \\ (230 \mathrm{~V}) \\ \text { or } \\ 460.0 \\ (460 \mathrm{~V}) \end{gathered}$		5.29 A
$\begin{aligned} & \text { n004 } \\ & \text { n005 } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} 5.25 \\ \text { p. A1-1 } \end{gathered}$
$\begin{aligned} & \text { n006 } \\ & \text { n007 } \\ & \text { n008 } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \end{aligned}$		p. A1-1 p. A1-1 p. A1-2
$\begin{aligned} & \text { n009 } \\ & \text { n010 } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		$\begin{gathered} \text { p. A1-2 } \\ 5.28 \end{gathered}$
n011	$\begin{gathered} 230.0 \\ \text { or } 230 \mathrm{~V}) \\ 460.0 \\ (460 \mathrm{~V}) \end{gathered} \text { (2) }$		5.29 C
n012	60.0 (2)		5.29
n013	$\begin{gathered} 230.0 \\ \text { or } 230 \mathrm{~V}) \\ 460.0 \\ (460 \mathrm{~V}) \end{gathered} \text { (2) }$		p. A1-2
$\begin{aligned} & \text { n014 } \\ & \text { n015 } \end{aligned}$	$\begin{gathered} 60.0 \text { (2) } \\ 3.0 \text { (2) } \end{gathered}$		p. A1-2 p. A1-2
$\begin{aligned} & \text { n016 } \\ & \text { n017 } \\ & \text { n018 } \end{aligned}$	$\begin{gathered} 17.2(2) \\ 1.5(2) \\ 11.5(2) \end{gathered}$		p. A1-2 p. A1-2 p. A1-2
$\begin{aligned} & \text { n019 } \\ & \text { n020 } \\ & \text { n021 } \\ & \hline \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 5.2 \\ & 5.2 \\ & 5.2 \\ & \hline \end{aligned}$
	$\begin{gathered} 10.0 \\ 1 \\ 0 \end{gathered}$		$\begin{aligned} & 5.2 \\ & 5.3 \\ & 5.8 \end{aligned}$
$\begin{aligned} & \text { n025 } \\ & \text { n026 } \\ & \text { n027 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.0 \\ & \hline \end{aligned}$		5.19 B 5.19 B 5.19 B
$\begin{aligned} & \text { n028 } \\ & \text { n029 } \\ & \text { n030 } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 6.0 \\ & 100 \\ & \hline \end{aligned}$		5.19 B 5.15 5.12
$\begin{aligned} & \text { n031 } \\ & \text { n032 } \\ & \text { n033 } \end{aligned}$	$\begin{gathered} 0 \\ (1) \\ 1 \\ \hline \end{gathered}$		$\begin{aligned} & 5.12 \\ & 5.26 \\ & 5.26 \end{aligned}$

PARAMETER NUMBER (7)	FACTORY SETTING	USER SETTING	PARA. REF.
n034	3		p. A1-4
n035	0		5.19
n036	2		5.19
n037	4		5.19
n038	9		5.19
n039	10		5.19
n040	0		5.20
n041	1		5.20
n042	0		5.11
n043	1		5.11
n044	0		5.14
n045	0		5.13
n046	100		5.10
n047	0		5.10
n048	0		5.18
n049	1.00		5.18
n050	(1)		5.5
n051	0		5.17
n052	110		5.19 E
n053	(1)		5.19 E
n054	(1)		5.19 E
n055	(1)		5.17
n056	0		5.4
n057	0		5.4
n058	0.0		5.6
n059	0.0		5.6
n060	1.0		5.6
n061	1		p. A1-7
n062	(5)		4.4
n063	(5)		4.4
n064	50		5.7
n065	0.0		5.7
n066	0.0		5.7
n067	1.0		5.27
n068	(1)		5.27
n069	(1)		5.27
n070	1		5.24
n071	170		5.24
n072	160		5.24
n073	0.0		5.20
n074	0		5.21
n075	160		5.21
n076	0.1		5.21
n077	0.0		5.19 F
n078	0.0		5.19 F

PARAMETER NUMBER (7)	FACTORY SETTING	USER SETTING	PARA. REF.
n079	0		(4)
n080	7		5.30
n081	8		5.30
n082	0		5.31
n083	0.2		5.21
n084	0		5.22 A
n085	1.00		5.22 D
n086	1.0		5.22 F
n087	10.0		5.22 F
n088	0.00		5.22 F
n089	0		5.22 G
n090	100		5.22 G
n091	0.0		5.22 G
n092	0		5.22 E
n093	0		5.22 E
n094	1.0		5.22 E
n095	0		5.9
n096	(1)		5.9
n097	50		5.9
n098	12		5.9
n099	1		5.9
n100	0		5.9
n101	0.5		5.9
n102	0.2		5.9
n103	1		5.16
n104	1		5.16
n105	0		5.16
n106	0		5.16
n107	2		5.16
n108	1		5.16
n109	0.0		5.23 .1
n110	30		5.26
n111	2.0		5.23 .1
n112	0		5.16.1
n113	2.0		5.20
n114	0		5.15 .1
n115	(1)		A3-1
n116	(1)		A1-11
n117	6.0		
n118	50		

(1) Factory setting depends on GPD 505 rating. See Table A3-1.
(2) Initial value is related to V/f curve selected by $\boldsymbol{n 0 1 0}$ setting.
(3) Motor rated current (n032) is factory set at to a value related to the drive rating (see Table A3-1). User must program this parameter to the actual FLA of the motor being used. See "Thermal Overload Protection", on page 5-50.
(4) Only effective when Dynamic Braking components are wired to drive terminals; see Appendix 7.
(5) The user cannot program these two parameters. They are used for the automatic Elapsed Timer function of the drive; see paragraph 4.4.

Current Ratings \& Horsepower Range

RATED INPUT	CURRENT RATING (AMPS)	NOMINAL HORSEPOWER (120\% OL)	MODEL NO. GPD505V-
$\begin{aligned} & 2 \\ & 3 \\ & 0 \\ & \text { V } \end{aligned}$	$\begin{gathered} 3.2 \\ 6 \end{gathered}$	$\begin{gathered} 0.75 \\ 1 / 1.5 \end{gathered}$	A003
	8	2	A008
	11	3	A011
	17.5	5	A017
	27	7.5 / 10	A027
	36	15	A036
	54	20	A054
	68	25	A068
	80	30	A080
	104	40	A104
	130	50	A130
	160	60	A160
	192	75	A192
	248	100	A248
	312	125	A312
460V	1.8	0.75	B001
	3.4	$1 / 2$	B003
	4.8	3	B004
	8	5	B008
	11	7.5	B011
	14	10	B014
	21	15	B021
	27	20	B027
	34	25	B034
	41	30	B041
	52	40	B052
	65	50	B065
	80	60	B080
	96	75	B096
	128	100	B128
	180	125 / 150	B180
	240	200	B240
	302	250	B302
	380	300	B380
	506	350 / 400	B506
	675	500	B675

Do not touch circuit components until main input power has been turned off and "CHARGE" lamp is extinguished. The capacitors are still charged and can be quite dangerous.

Do not connect or disconnect wires and connectors while power is applied to the circuit.

CAUTION

Know your application before using either Initialization function of n001. This parameter must be set to " 0 ", " 1 ", " 2 ", or " 3 " to operate the drive. (See paragraph 5.23 for additional information.)

8 = Factory 2-Wire Control Initialization (Maintained RUN Contact)
9 = Factory 3-Wire Control Initialization (Momentary START/STOP Contact) Entering either Initialization code resets all parameters, and automatically returns $n 001$ setting to " 1 ". If the GPD 505 is connected for 3 -Wire control and this constant is set to " 8 " (2-Wire Control Initialization), the motor may run in reverse direction WITHOUT A RUN COMMAND APPLIED. Equipment damage or personal injury may result.

CAUTION

When drive is programmed for auto-restart (n056 = " 1 " - " 10 "), the motor may restart unexpectedly - personal injury may result.

IMPORTANT

Wiring should be performed only by qualified personnel.
Always ground the GPD 505 using ground terminal ($\stackrel{\perp}{=}$). See paragraph 1.4.3, "Grounding".
Verify that the rated voltage of the drive matches the voltage of the incoming power.
Never connect main circuit output terminals T1, T2, and T3 to AC main circuit power supply.
All parameters have been factory set. Do not change their settings unnecessarily.
Do not perform a "HIPOT" or withstand voltage test on any part of the GPD 505. Equipment uses semi-conductors and is vulnerable to high voltage.

The Control PCB employs CMOS ICs which are easily damaged by static electricity. Use proper electrostatic discharge (ESD) procedures when handling the Control PCB.

Any modification of the product by the user is not the responsibility of MagneTek, and will void the warranty.

Data subject to change without notice.

CONTENTS

PARAGRAPH
SUBJECT
PAGE
GPD 505 SIMPLIFIED START-UP PROCEDURE i
CURRENT RATINGS \& HORSEPOWER RANGE v
WARNING/CAUTION STATEMENTS vi
1 INSTALLATION 1-1
1.1 General 1-1
1.2 Receiving 1-1
1.3 Physical Installation 1-1
1.4 Electrical Installation 1-2
1.4 .1 Main Circuit Input/Output 1-2
1.4 .2 Control Circuit 1-8
1.4 .3 Grounding 1-10
1.4 .4 Auxiliary Input and Output Power Option Devices 1-11
1.4 .5 Conformance to European EMC Directive 1-12
Fig. 1-3. 230V or 460V Interconnections - 2-Wire Control 1-15
Fig. 1-4. 230V or 460V Interconnections - 3-Wire Control 1-17
2 INITIAL START-UP ("LOCAL" CONTROL) 2-1
2.1 Pre-power Checks 2-1
2.2 Test Run Using Digital Operator ("Local" Control) 2-2
2.3 Pre-operation Considerations 2-4
2.4 Storage Function 2-4
3 OPERATION AT LOAD 3-1
44.1DIGITAL OPERATOR4-1
General 4-14.2
4.3
Display and Keypad 4-1
4.4
Basic Programming 4-5
Monitor Displays55.14-6
5.2PROGRAMMABLE FEATURES5-1General5-1
5.3 Accel/Decel: S-Curve Characteristics 5-4
5.4 Auto-restart 5-5
5.5 Carrier Frequency 5-6
5.6 5-7
Critical Frequency Rejection
5.7 5-8
5.8 5-9
Digital Operator Display Selection
5.9 5-11
5.10 Frequency Reference Command Bias/Gain 5-13
5.11 Frequency Reference Input Signals (Auto/Manual) 5-15
5.12 Frequency Reference Upper \& Lower Limits 5-17
5.13 Frequency Reference - Loss Detection 5-18
5.14 Frequency Reference Retention 5-18.1
5.15 Jog Reference 5-18.2

CONTENTS - Continued

PARAGRAPHSUBJECT
PAGE
5.15.1 Local/Remote Changeover 5-19
5.16 Modbus Control 5-20
5.16.1 Miscellaneous Protective Functions 5-22.1
5.17 Momentary Power Loss Ride-thru 5-22.2
5.18 Multi-function Analog Monitor Output (Term. AM \& AC) 5-23
5.19 Multi-function Input Terminals (Term. S2-S6) 5-24

- Remote/Local 5-26
- Multi-step Speed 5-27
- External Base Block 5-29
- Speed Search 5-30
- Timer Function 5-32
- Sample/Hold Command 5-33
- Up/Down Function 5-34
- Loop Test 5-36
5.20 Multi-function Output Terminals (Term. MA, MB, \& MC; M1 \& M2) 5-37
5.21 Overtorque Detection 5-31
5.22 PID Control 5-41
5.23 Reset Codes; 2-Wire, 3-Wire Initialization 5-44.1
5.23.1 Slip Compensation 5-44.2
5.24 Stall Prevention 5-46
5.25 Stopping Method 5-48
5.26 Thermal Overload Protection 5-50
5.27 Torque Compensation 5-52
$5.28 \quad$ V/f Pattern - Standard 5-52
$5.29 \quad$ V/f Pattern - Custom 5-54
5.30 Input Phase Loss Detection 5-56
5.31 Output Phase Loss Detection 5-56
6 FAILURE INDICATION AND DETAILS 6-1
6.1 General 6-1
6.2 Displaying Fault Sequence 6-4
7 TROUBLESHOOTING 7-1
App. 1 LISTING OF PARAMETERS A1-1
App. 2 SPECIFICATIONS A2-1
App. 3 CAPACITY RELATED PARAMETERS A3-1
App. 4 POWER CIRCUIT MODULE TESTING A4-1
App. 5 GPD 505 SPARE PARTS A5-1
App. 6 GPD 505 DIMENSIONS A6-1
App. 7 DYNAMIC BRAKING CONNECTIONS A7-1

Section 1. RECEIVING AND INSTALLATION

1.1 GENERAL

The GPD 505 is a high performance sine-coded pulse width modulated special purpose AC motor drive which generates an adjustable voltage/frequency three phase output for complete speed control of most conventional squirrel cage induction motors. Automatic stall prevention and voltage boost prevents nuisance tripping during load or line side transient conditions. The GPD 505 will not induce any voltage line notching distortion back to the utility line and maintains a displacement power factor of not less than 0.98 throughout its speed range.

When properly installed, operated and maintained, the GPD 505 will provide a lifetime of service. It is mandatory that the person who operates, inspects, or maintains this equipment thoroughly read and understand this manual before proceeding.

This manual primarily describes the GPD 505, but contains basic information for the operator control station as well. For details of the operation of other units in the drive system, refer to their respective manuals.

1.2 RECEIVING

The GPD 505 is thoroughly tested at the factory. After unpacking, verify the part numbers with the purchase order (invoice). Any damages or shortages evident when the equipment is received must be reported immediately to the commercial carrier who transported the equipment. Assistance, if required, is available from your sales representative.

If the drive will be stored after receiving, keep it in its original packaging and store according to storage temperature specifications in Appendix 2.

1.3 PHYSICAL INSTALLATION

Location of the GPD 505 is important to achieve proper performance and normal operating life. The unit should be installed in an area where it will be protected from:

- Direct sunlight, rain or moisture.
- Corrosive gases or liquids.
- Vibration, airborne dust or metallic particles.

When preparing to mount the GPD 505, lift it by its base, never by the front cover. For effective cooling as well as proper maintenance, the GPD 505 must be installed on a flat, non-flammable vertical surface (wall or panel) using four mounting screws. There MUST be a MINIMUM 4.7 in. clearance above and below the GPD 505 to allow air flow over the heat sink fins. A minimum 1.2 in . clearance is required on each side on the GPD 505.

A GPD 505 in a free-standing floor-mount cabinet must be positioned with enough clearance for opening the door of the cabinet; this will ensure sufficient air space for cooling. Make sure air entering the drive is below $113^{\circ} \mathrm{F}\left(45^{\circ} \mathrm{C}\right)$ (for protected chassis drives), or below $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ (for NEMA 1 drives), by adding a fan or other cooling device, if needed. See environmental specifications in Appendix 2.

1.4 ELECTRICAL INSTALLATION

All basic interconnections (using the Digital Operator) are shown in Figures 1-3 and 1-4.

1.4.1 Main Circuit Input/Output

Complete wiring interconnections for the main circuit according to Tables 1-1 and 1-2, while observing the following:

- Use 600 V vinyl-sheathed wire or equivalent. Wire size should be determined considering voltage drop of leads.
- NEVER connect AC main power to output terminals T1 (U), T2 (V), and T3 (W).
- NEVER allow wire leads to contact metal surfaces. Short-circuit may result.
- NEVER connect power factor correction capacitors or noise filters to GPD 505 output.

- SIZE OF WIRE MUST BE SUITABLE FOR CLASS I CIRCUITS.

- It is recommended that motor lead length NOT EXCEED 164 feet (50 meters), and motor wiring should be run in a separate conduit from the power wiring. If lead length must exceed this distance, reduce carrier frequency (see paragraph 5.5) and consult factory for proper installation procedures.
- Use UL listed closed loop connectors or CSA certified ring connectors sized for the selected wire gauge. The connectors are to be installed using the correct crimp tool recommended by the connector manufacturer.

WIRE SIZE		TERMINAL SCREW	CLOSED-LOOP CONNECTOR	CLAMPING TORQUE				
AWG mm²				STEEL		COPPER		
		lb-in		N -m	Ib-in	$\mathrm{N}-\mathrm{m}$		
20	0.5		M3.5	1.25-3.5	7.8	0.9	7.0	0.8
18	0.75	M4	1.25-4	13.0	1.5	10.4	1.2	
16	1.25	M4	1.25-4	13.0	1.5	10.4	1.2	
14	2	M4	2-4	13.0	1.5	10.4	1.2	
		M5	2-5	26.1	2.9	3.1	0.4	
12	3.5	M4	3.5-4	13.0	1.5	10.4	1.2	
		M5	3.5-5	26.1	2.9	3.1	0.4	
10	5.5	M4	5.5-4	13.0	1.5	10.4	1.2	
		M5	5.5-5	26.1	2.9	3.1	0.4	
8	8	M5	8-5	26.1	2.9	3.1	0.4	
		M6	8-6	40.9	4.6	4.8	0.5	
6	14	M6	14-6	40.9	4.6	4.8	0.5	
4	22	M8	22-8	100.0	11.3	11.7	1.3	
2	38	M8	38-8	100.0	11.3	11.7	1.3	
		M10	38-10	182.6	20.6	21.4	2.4	
1/0	60	M10	60-10	182.6	20.6	21.4	2.4	
3/0	80	M10	80-10	182.6	20.6	21.4	2.4	
4/0	100	M10	100-10	182.6	20.6	21.4	2.4	
		M12	100-12	313.0	35.4	36.7	4.2	
MCM300	150	M12	150-12	313.0	35.4	36.7	4.2	
MCM400	200	M12	200-12	313.0	35.4	36.7	4.2	
MCM650	325	M12	325-12	313.0	35.4	36.7	4.2	

Table 1-1. Wire Sizing For Main Circuit

SECTION A. 230V				
DRIVEMODEL NO.	TERMINAL SYMBOL	TERMINAL SCREW	WIRE SIZE	
			AWG	mm ${ }^{2}$
A003, A006	$\mathrm{L} 1(\mathrm{R}), \mathrm{L} 2(\mathrm{~S}), \mathrm{L} 3(\mathrm{~T}), \Theta, \oplus 1, \oplus 2, \mathrm{~B} 1, \mathrm{~B} 2, \mathrm{~T} 1(\mathrm{U}), \mathrm{T} 2(\mathrm{~V}), \mathrm{T} 3(\mathrm{~W}), \stackrel{\perp}{=}$	M4	14-10	2-5.5
A008	$\mathrm{L} 1(\mathrm{R}), \mathrm{L} 2(\mathrm{~S}), \mathrm{L} 3(\mathrm{~T}), \Theta, \oplus 1, \oplus 2, \mathrm{~B} 1, \mathrm{~B} 2, \mathrm{~T} 1$ (U), T2 (V), T3 (W)	M4	14-10	2-5.5
	$\stackrel{1}{\square}$	M4	12-10	3.5-5.5
A011	L1 (R), L2 (S), L3 (T), ©, ¢1, ¢2, B1, B2, T1 (U), T2 (V), T3 (W),	M4	12-10	3.5-5.5
A017	$\mathrm{L} 1(\mathrm{R}), \mathrm{L} 2(\mathrm{~S}), \mathrm{L} 3(\mathrm{~T}), \Theta, \oplus 1, \oplus 2, \mathrm{~B} 1, \mathrm{~B} 2, \mathrm{~T} 1(\mathrm{U}), \mathrm{T} 2(\mathrm{~V}), \mathrm{T} 3(\mathrm{~W}), \stackrel{\perp}{=}$	M4	10	5.5
$\begin{aligned} & \hline \text { A027, } \\ & \text { A036 } \end{aligned}$	L1 (R), L2 (S), L3 (T), Θ, ¢1, ¢2, B1, B2, T1 (U), T2 (V), T3 (W)	M5	8	8
	$\stackrel{1}{\square}$	M5	10-8	5.5-8
A054	L1 (R), L2 (S), L3 (T), ©, ¢1, セ2, ¢3, T1 (U), T2 (V), T3 (W)	M6	4	22
	$\stackrel{1}{=}$	M6	8	8
A068	L1 (R), L2 (S), L3 (T), ©, ¢1, ¢2, ¢3, T1 (U), T2 (V), T3 (W)	M8	3	30
	$\stackrel{1}{\stackrel{1}{\square}}$	M6	8	8
A080	L1 (R), L2 (S), L3 (T), L11, L21, L31, T1 (U), T2 (V), T3 (W)	M8	3	30
	$\stackrel{1}{ \pm}$	M8	6	14
A104	L1 (R), L2 (S), L3 (T), L11, L21, L31, T1 (U), T2 (V), T3 (W)	M8	2	38
	$\stackrel{\perp}{ \pm}$	M8	6	14
A130	L1 (R), L2 (S), L3 (T), L11, L21, L31, T1 (U), T2 (V), T3 (W)	M10	4/0	100
	$\stackrel{\perp}{\square}$	M8	4	22
A160	L1 (R), L2 (S), L3 (T), L11, L21, L31, T1 (U), T2 (V), T3 (W)	M10	1/0 $\times 2 \mathrm{P}$	$60 \times 2 \mathrm{P}$
	$\stackrel{1}{=}$	M8	4	22
A192	L1 (R), L2 (S), L3 (T), L11, L21, L31, T1 (U), T2 (V), T3 (W)	M10	1/0 $\times 2 \mathrm{P}$	$60 \times 2 \mathrm{P}$
	$\stackrel{\perp}{\square}$	M8	4	22
A248	L1 (R), L2 (S), L3 (T), L11, L21, L31, T1 (U), T2 (V), T3 (W)	M10	$1 / 0 \times 2 \mathrm{P}$	$60 \times 2 \mathrm{P}$
	$\stackrel{\perp}{=}$	M8	3	30
A312	L1 (R), L2 (S), L3 (T), L11, L21, L31, T1 (U), T2 (V), T3 (W)	M12	4/0 $\times 2 \mathrm{P}$	$100 \times 2 \mathrm{P}$
	$\stackrel{\text { ¢ }}{\stackrel{1}{\prime}}$	M8	1	50
Section B. 460V				
$\begin{aligned} & \text { DRIVE } \\ & \text { MODEL NO. } \\ & \text { GPD505V- } \end{aligned}$	TERMINAL SYMBOL	TERMINAL SCREW	WIRE SIZE	
			AWG	mm^{2}
B001	$\mathrm{L} 1(\mathrm{R}), \mathrm{L} 2(\mathrm{~S}), \mathrm{L} 3(\mathrm{~T}), \mathrm{\Theta}, \oplus 1, \oplus 2, \mathrm{~B} 1, \mathrm{~B} 2, \mathrm{~T} 1(\mathrm{U}), \mathrm{T} 2(\mathrm{~V}), \mathrm{T} 3(\mathrm{~W}), \stackrel{\perp}{=}$	M4	14-10	2-5.5
$\begin{gathered} \hline \text { B003, B004, } \\ \text { B008 } \end{gathered}$	L1 (R), L2 (S), L3 (T), Ө, ¢1, ¢2, B1, B2, T1 (U), T2 (V), T3 (W)	M4	14-10	2-5.5
	$\stackrel{\perp}{\square}$	M4	12-10	3.5-5.5
B011	L1 (R), L2 (S), L3 (T), ©, ¢1, ¢2, B1, B2, T1 (U), T2 (V), T3 (W)	M4	14-10	2-5.5
	$\stackrel{1}{\stackrel{1}{\square}}$	M4	12-10	3.5-5.5

Table 1-1. Wire Sizing For Main Circuit - Continued

Section B. 460V - Continued				
$\begin{gathered} \text { DRIVE } \\ \text { MODEL NO. } \\ \text { GPD505V- } \end{gathered}$	TERMINAL SYMBOL	TERMINAL SCREW	WIRE SIZE	
			AWG	mm^{2}
B014	L1 (R), L2 (S), L3 (T), ©, ¢1, ¢2, B1, B2, T1 (U), T2 (V), T3 (W)	M4	12-10	3.5-5.5
	$\frac{1}{=}$	M4	12-10	3.5-5.5
B021	L1 (R), L2 (S), L3 (T), $\Theta, \oplus 1, \oplus 2$, B1, B2, T1 (U), T2 (V), T3 (W)	M4	8-6	8-14
	$\stackrel{\perp}{\square}$	M4	8-6	8-14
B027	L1 (R), L2 (S), L3 (T), ©, ¢1, ¢2, B1, B2, T1 (U), T2 (V), T3 (W)	M5	8-6	8-14
	$\frac{\perp}{=}$	M6	8	8
B034	L1 (R), L2 (S), L3 (T), ©, ¢1, ¢2, B1, B2, T1 (U), T2 (V), T3 (W)	M5	8-6	8-14
	$\frac{1}{=}$	M6	8	8
B041	L1 (R), L2 (S), L3 (T), L11, L21, L31, T1 (U), T2 (V), T3 (W)	M6	6	14
	$\stackrel{\perp}{=}$	M8	8	8
B052	L1 (R), L2 (S), L3 (T), L11, L21, L31, T1 (U), T2 (V), T3 (W)	M6	4	22
	$\frac{1}{=}$	M8	8	8
B065	L1 (R), L2 (S), L3 (T), L11, L21, L31, T1 (U), T2 (V), T3 (W)	M8	4	22
	$\stackrel{\perp}{=}$	M8	8	8
B080	L1 (R), L2 (S), L3 (T), L11, L21, L31, T1 (U), T2 (V), T3 (W)	M8	3	30
	$\frac{1}{=}$	M8	6	14
B096	L1 (R), L2 (S), L3 (T), L11, L21, L31, T1 (U), T2 (V), T3 (W)	M8	1	50
	$\frac{1}{=}$	M8	6	14
B128	L1 (R), L2 (S), L3 (T), L11, L21, L31, T1 (U), T2 (V), T3 (W)	M10	4/0	100
	$\stackrel{\perp}{=}$	M8	4	22
B180	L1 (R), L2 (S), L3 (T), L11, L21, L31, T1 (U), T2 (V), T3 (W)	M10	$1 / 0 \times 2 \mathrm{P}$	$60 \times 2 \mathrm{P}$
	$\frac{1}{=}$	M8	4	22
B240	L1 (R), L2 (S), L3 (T), L11, L21, L31, T1 (U), T2 (V), T3 (W)	M10	$1 / 0 \times 2 \mathrm{P}$	$60 \times 2 \mathrm{P}$
	$\stackrel{\perp}{\square}$	M8	3	30
B302	L1 (R), L2 (S), L3 (T), L11, L21, L31, T1 (U), T2 (V), T3 (W)	M12	$4 / 0 \times 2 \mathrm{P}$	$100 \times 2 \mathrm{P}$
	$\stackrel{\perp}{ \pm}$	M8	1	50
B380	L1 (R), L2 (S), L3 (T), ©, ¢1, ¢3, T1 (U), T2 (V), T3 (W)	M16	MCM650 $\times 2 \mathrm{P}$	$325 \times 2 \mathrm{P}$
	$\frac{1}{=}$	M8	1	50
	l1 (r), l2 200 (s200), I2 400 (s400)	M4	20-10	0.5-5.5
B506	L1 (R), L2 (S), L3 (T), ¢, ¢1, ¢3, T1 (U), T2 (V), T3 (W)	M16	MCM650 $\times 2 \mathrm{P}$	$325 \times 2 \mathrm{P}$
	$\frac{1}{=}$	M8	1/0	60
	I1 (r), I2 200 (s200), I2 400 (s400)	M4	20-10	0.5-5.5
B675	L1 (R), L2 (S), L3 (T), $\Theta, \oplus 1, \oplus 3, \mathrm{~T} 1$ (U), T2 (V), T3 (W)	M16	MCM650 $\times 2 \mathrm{P}$	$325 \times 2 \mathrm{P}$
	$\stackrel{\perp}{\perp}$	M8	1/0	60

efesotomasyon.com

Table 1-2. Terminal Functions and Voltages of Main Circuit

SECTION A. 230V			
TERMINAL	FUNCTION		
	A003-A036	A054-A068	A080-A312
L1 (R) L2 (S) L3 (T)	Three phase Main circuit input power supply 200 / 208 / 220 V at $50 \mathrm{~Hz} ; 200 / 208$ / $220 / 230 \mathrm{~V}$ at 60 Hz		
$\begin{aligned} & \text { L11 } \\ & \text { L21 } \\ & \text { L31 } \end{aligned}$			Three phase Main circuit input power supply (same as at L1, L2 \& L3)
$\begin{aligned} & \text { T1 (U) } \\ & \text { T2 (V) } \\ & \text { T3 (W) } \end{aligned}$	Three phase AC output to motor 0 V to max. input voltage level		
$\begin{aligned} & \text { B1 } \\ & \text { B2 } \end{aligned}$	DB Unit terminals (B1 \& B2)		---
	DC Reactor terminals $(\oplus 1 \& \oplus 2)$ DC Bus terminals ($\oplus 1 \& \Theta$)		------
$\oplus 3$	------	DB Unit terminals ($\oplus 3$ \& Θ) *	------
$\stackrel{\perp}{=}$	Ground terminal (100 ohms or less)		
SECTION B. 460V			
TERMINAL	FUNCTION		
	B001-B034	B041-B302	B380-B675
$\begin{aligned} & \text { L1 (R) } \\ & \text { L2 (S) } \\ & \text { L3 (T) } \end{aligned}$	Three phase Main circuit input power supply $380 / 400 / 415 / 460 \mathrm{~V}$ at $50 / 60 \mathrm{~Hz}$		
$\begin{aligned} & \text { L11 } \\ & \text { L21 } \\ & \text { L31 } \\ & \hline \end{aligned}$	------	Three phase Main circuit input power supply (same as at L1, L2 \& L3)	------
$\begin{aligned} & \text { T1 (U) } \\ & \text { T2 (V) } \\ & \text { T3 (W) } \end{aligned}$	Three phase AC output to motor OV to max. input voltage level		
$\begin{aligned} & \text { B1 } \\ & \text { B2 } \end{aligned}$	DB Unit terminals (B1 \& B2)	------	
$\begin{aligned} & \Theta \\ & \oplus 1 \\ & \oplus 2 \end{aligned}$	DC Reactor terminals $(\oplus 1 \& \oplus 2)$ DC Bus terminals ($\oplus 1 \& \Theta$)	------	
$\oplus 3$	------		DB Unit terminals ($\oplus 3$ \& \odot)
$\begin{array}{\|l\|} \hline \text { I } 1 \text { (r) } \\ \text { I } 2200(s 200) \\ \text { I } 2400(s 400) \\ \hline \end{array}$	------		Power for heat sink fan: I 1 to I 2 200: 230 Vac I 1 to I 2 400: 460 Vac
$\stackrel{\perp}{=}$	Ground terminal (10 ohms or less)		

----- indicates that terminals are not present.

Main Circuit Configuration Block Diagrams 230V

GPD505V-A054 to -A068

GPD505V-A080 to -A104

GPD505V-A130 to -A312

Main Circuit Configuration Block Diagrams 460V

When using DC input as main circuit power, connect control power transformer terminals (r, s400) to L1 and L2, respectively.

1.4.2 Control Circuit

All basic control circuit (signal) interconnections are shown in the appropriate diagram:

- Interconnections for external two-wire control in combination with the Digital Operator are shown in Figure 1-3 (for 230V or 460V rated drives).
- Interconnections for external three-wire control in combination with the Digital Operator are shown in Figure 1-4 (for 230V or 460V rated drives).

Make wiring connections according to Figures 1-1 thru 1-4 and Table 1-3, observing the following:

- Signal Leads: Terminals S1-S6 \& SC; FS, FV, FI, FC \& G; and AM \& AC.
- Control Leads: Terminals M1 \& M2 and MA, MB \& MC.
- Power Leads : Input Terminals L1 (R), L2 (S), and L3 (T), and Output Terminals T1 (U), T2 (V), and T3 (W).
- Use twisted shielded or twisted-pair shielded wire (20-16 AWG (0.5-1.25mm²)) for control and signal circuit leads. Use twisted shielded or twisted-pair shielded wire (20-14 AWG ($0.5-2 \mathrm{~mm}^{2}$)) for shield sheath terminal (terminal G). When using shielded wire, the shield sheath MUST be connected at the GPD 505 ONLY (terminal G). The other end should be dressed neatly and left unconnected (floating). See Figure 1-1.

Table 1-3. Terminal Functions and Signals of Control Circuit

TERMINAL	FUNCTIONS	DESCRIPTION / SIGNAL LEVELS
S1	2-WIRE CONTROL: Forward Run / Stop signal (See NOTE 1)	Run at closed, stop at open (See NOTE 2)
	3-WIRE CONTROL: Run signal	Run at closed (See NOTE 2)
S2	2-WIRE CONTROL: Reverse Run / Stop signal (See NOTE 1)	Run at closed, stop at open (See NOTES 2 \& 3)

Table 1-3. Terminal Functions and Signals of Control Circuit - Continued

TERMINAL	FUNCTIONS	DESCRIPTION / SIGNAL LEVELS	
AM	Multi-function analog monitor (+)	Output current or output frequency is selectable	Type of analog signal (operating parameter) to be output is selected by setting of parameter $n 048$ Monitor output: 0 to $+11 \mathrm{~V} ; 2 \mathrm{~mA}$ maximum
AC	Multi-function analog monitor $(-)$		

NOTES:

1. When Forward Run and Reverse Run inputs are both closed for more than 500 ms , the Digital Operator displays a blinking " EF " alarm code and the motor (if rotating) is decelerated by the GPD 505 to a stop. This stop condition is not stored by the GPD 505 (on Digital Operator, red LED at STOP key does not light); IF ONE OF THE INPUTS IS OPENED, THE MOTOR WILL IMMEDIATELY START UP AGAIN.
2. Terminals $\mathrm{S} 1-\mathrm{S} 6$ source +24 Vdc (8 mA max.) and operate in a Low $=$ True (ON) configuration when connected to terminal SC.

When using relays for input to terminals S1-S6, use relays with highly reliable contacts (for very small current) with a capacity of 30 Vdc or more and rated current of 100 mA or higher. When using transistor (open collector) input, use transistors with rated voltage of 35 Vdc or more and rated current of 100 mA or more.
3. These terminals are multi-function inputs. The indicated functions are their settings, based on a 2-Wire reset. For 3 -Wire reset definitions, and other settings, see descriptions for "MultiFunction Input Terminals", parameters n035 thrun039, in paragraph 5.19.

1.4.3 Grounding

- The GPD 505 must be solidly grounded using main circuit ground terminal $\stackrel{\perp}{=}$. Ground resistance should be 100 ohms or less. Select lead size suitable for size of terminal screw (refer to Table 1-1). Make the length as short as possible.
- NEVER ground the GPD 505 in common with welding machines, motors, or other large-current electrical equipment.
- Where several GPD 505s are used, ground each directly or daisy-chain to the ground pole(s). DO NOT FORM A LOOP WITH THE GROUND LEADS.

CORRECT

CORRECT

NOT
ACCEPTABLE

1.4.4 Auxiliary Input and Output Power Option Devices

Figure 1-2 is a factory guideline for proper wiring practices and relative locations within the electrical path from the line to the load. It does not imply what devices are needed for a particular application, nor does it show what devices were shipped with a particular order. Therefore, disregard those items in the diagram which are not being used in your installation. However, it is recommended that an input or DC reactor be used with models GPD505V-A003 thru -A068 and -B001 thru -B034 when wired to a source of 600 kVA or greater. Mount all power option devices as close to the drive, and keep electrical connections as short as possible.

DO NOT run input and output wiring in the same conduit.

NOTES

1. Connect drive ground terminal or panel to earth ground. Always use low impedance paths and connections.
2. Mount input and output RFI filters physically as close to the drive as possible (on the same panel, if possible). Filters should have a solid connection from filter case or ground terminal to drive panel or ground terminal (conduit with good bare metal to bare metal connections may serve as the path). If multiple input or output RFI filters are used, they must be wired in parallel.
3. Shield conductors with metallic conduit.
4. Connect output conduit in a manner that allows it to act as an unbroken shield from the drive panel to the motor casing.
5. RF noise filter (different from RFI filter) part no. 05P00325-0023 is a delta wye capacitor network which is wired in parallel with the drive input terminals. On the smaller drives with die cast chassis, it must be mounted externally. On the larger drives with sheet metal chassis, it may be mounted inside the area where the input power wiring enters the drive. On units equipped with bypass, it may be wired to the primary side of the circuit breaker and mounted to the bypass panel or sidewall.
6. Connection points:

	Drive w/o Bypass	Drive w/ Bypass
Input	L1, L2, L3	Ckt Brkr L1, L2, L3
Output	T1, T2, T3	Unwired side of Overload relay

1.4.5 Conformance to European EMC Directive

In order to conform to EMC standards, the exclusive-use methods are required for line filter application, cable shielding and drive installation. The following explains the outline of the methods.

The line filter and GPD 505 drive must be mounted on the same metal plate. The filter should be mounted as close to the drive as practical. Keep cable as short as possible. The metal plate should be securely grounded. The ground of line filter and drive must be bonded to the metal plate with as much area as possible.

For mains input cables, screened cable is recommended at least within the panel. The screen of the cable should be connected to a solid ground. For motor cable, screened cable (max. 20 m) must be used and the screen of the motor cable should be connected to ground at both ends by a short connection, using as large an area as practical.

For more detailed explanation, refer to MagneTek document TD 4077, "Installation Guidelines For EMC Directive using MagneTek AC Drive Products."

Table 1-4 and Figure 1-2A show the line filter list for ECM standards and the installation/wiring of GPD 505 drive and line filter.

Table 1-4. Line Filters for GPD 505

Drive Model Number GPD505V-	Line Filter			
	MagneTek Part Number	Rated Current (A)	Mass (kg)	Dimensions in $\mathrm{mm}{ }^{(1)}$ H x W x D (2)
B001	5P325-0030	7	1.1	$255 \times 50 \times 126$
B003				
B004				
B008	5P325-0031	18	1.7	$305 \times 55 \times 142$
B011				
B014	5P325-0032	30	1.8	$335 \times 60 \times 150$
B021				
B027	5P325-0033	42	2.8	$329 \times 70 \times 185$
B034				
B041	5P325-0034	55	3.1	$329 \times 80 \times 185$
B052	5P325-0035	75	4.0	$329 \times 80 \times 220$
B065				
B080	5P325-0036	100	5.5	$379 \times 90 \times 220$
B096	5P325-0037	130	7.5	$429 \times 110 \times 240$
B128	5P325-0038	180	11	$438 \times 110 \times 240$
B180	5P325-0039	300	15	$160 \times 300 \times 564$
B240	5P325-0040	400	22	$160 \times 300 \times 564$
B302				

(1) $1 \mathrm{~mm}=0.0394$ inches
(2) D is the distance the filter will extend outward from the surface of the metal plate.

Figure 1-2A. Installation of Line Filter and GPD 505 Drive

NOTES FOR FIGURE 1-3

- Indicates components not supplied.
© ○ - Indicates customer connection terminal. Wire only to terminals shown. Note that not all terminals shown are available in all ratings - see pages 1-3 thru 1-5.
() - Indicates alternate terminal marking, i.e., (R) and L1.
- Function labels shown for these terminals are determined by factory settings of n035 through n039 (see paragraph 5.19).
- Function labels shown for these terminals are determined by factory settings of n040\&n041 (see paragraph 5.20).
* - Function labels shown for these terminals are determined by factory setting of n048 (see paragraph 5.18).
- - Function label shown for this terminal is determined by factory setting of n042 \& n 043 (see paragraph 5.11).

1. Multiple combinations of frequency references are possible - see paragraph 5.11.
2. The GPD 505 Electronic Thermal Overload function (n032, n033) meets standards set by UL and CSA for motor thermal overload protection. If local code requires separate mechanical overload protection, an overload relay should be installed, interlocked with the GPD 505 as shown. It should be the manual reset type to prevent automatic restart following a motor fault and subsequent contact reclosure after cool down.
3. Insulated twisted shielded wire is required.

2 -conductor \#18 GA. (Belden \#8760 or equivalent).
3 -conductor \#18 GA. (Belden \#8770 of equivalent).
Connect shield ONLY AT GPD 505 END. Stub and isolate other end.
4. The Digital Operator is standard on every GPD 505. Remote operators, as shown, may not be required.
5. Customer to connect terminal $\stackrel{\perp}{=}$ to earth ground (100 Ω or less, $230 \mathrm{~V} ; 10 \Omega$ or less, 460 V).
6. An optional DC reactor may be added for harmonic attenuation, if needed; see separate instruction sheet for wiring.
7. If application does not allow reverse operation, n006, Reverse Run Prohibit Selection, should be set to " 1 " (Reverse Run Disabled), and the Reverse Run/Stop input can be eliminated.
8. These terminals are not present on all drive ratings - refer to Table 1-1.

Figure 1-3. 230 V or 460 V Interconnections - 2-Wire Control (n001 = 8) (with parameters n035 = 0, n036 = 2, n037 = 4, n038 = 9, and n039 = 10)

- Indicates components not supplied.
© \bigcirc - Indicates customer connection terminal. Wire only to terminals shown. Note that not all terminals shown are available in all ratings - see pages 1-3 thru 1-5.
() - Indicates alternate terminal marking, i.e., (R) and L1.
A - Function labels shown for these terminals are determined by 3-Wire control factory settings of n035 through n039; n035=1,n036=--,n037=2,n038=4,n039 =9 (see paragraph 5.19).
- Function labels shown for these terminals are determined by factory settings of $\boldsymbol{n} 040$ \& n041 (see paragraph 5.20).
* - Function labels shown for these terminals are determined by factory setting of n048 (see paragrph 5.18).
- - Function label shown for this terminal is determined by factory setting of n042 \& n 043 (see paragraph 5.11).

1. Multiple combinations of frequency references are possible - see paragraph 5.11.
2. The GPD 505 Electronic Thermal Overload function (n 032 , n 033) meets standards set by UL and CSA for motor thermal overload protection. If local code requires separate mechanical overload protection, an overload relay should be installed, interlocked with the GPD 505 as shown. It should be the manual reset type to prevent automatic restart following a motor fault and subsequent contact reclosure after cool down.
3. Insulated twisted shielded wire is required.

2 -conductor \#18 GA. (Belden \#8760 or equivalent).
3 -conductor \#18 GA. (Belden \#8770 of equivalent).
Connect shield ONLY AT GPD 505 END. Stub and isolate other end.
4. The Digital Operator is standard on every GPD 505. Remote operators, as shown, may not be required.
5. Customer to connect terminal $\stackrel{\perp}{=}$ to earth ground (10Ω or less, $230 \mathrm{~V} ; 10 \Omega$ or less, 460 V).
6. An optional DC reactor may be added for harmonic attenuation, if needed; see separate instruction sheet for wiring.
7. If application does not allow reverse operation, n006, Reverse Run Prohibit Selection, should be set to " 1 " (Reverse Run Disabled), and the Forward/Reverse input can be eliminated.
8. These terminals are not present on all drive ratings - refer to Table 1-1.

Before running, n001 must be set to " 0 ", " 1 ", " 2 ", or " 3 ". Resetting drive constant n001 to " 8 " may cause the motor to run in the reverse direction WITHOUT A RUN COMMAND, and possibly result in damage to the equipment or personal injury.

Figure 1-4. 230 V or 460 V Interconnections - 3-Wire Control (n001 = 9) (with parameters n035 = 1, n036 = --, n037 = 2,
n038 = 4, and n039 = 9)

Section 2. INITIAL START-UP ("LOCAL" CONTROL)

2.1 PRE-POWER CHECKS

- Verify wires are properly connected and no erroneous grounds exist.
- Remove all debris from the GPD 505 enclosure. Check for loose wire clippings, metal shavings, etc.
- Verify all mechanical connections inside the GPD 505 are tight.
- Verify motor is not connected to load.
- Apply input power only after the front cover is in place. DO NOT remove the front cover or Digital Operator while input power is on.
- For 460V, GPD505V-B041 thru -B096: Verify that the GPD 505 power voltage select connector, located at lower left corner inside drive chassis (see Figure 2-1), is positioned correctly for the input power line voltage. Voltage is preset to 460 V at the factory. Reposition, if required, to match nominal line voltage.

Figure 2-1. Power Voltage Selection in 460V GPD 505

2.2 TEST RUN USING DIGITAL OPERATOR ("LOCAL" CONTROL)

The operation described in Table 2-1 and shown in Figure 2-2 is for a standard 60 Hz motor.

Figure 2-2. Example of Simple Operation

Table 2-1. Test Run With Digital Operator

DESCRIPTION	KEY SEQUENCE	DIGITAL OPERATOR DISPLAY	FUNCTION LEDs DISPLAY
(1) Power ON - Displays frequency reference setting.		SEQ \& REF LEDs "on" \square	Fref turns "ON"
Operation Condition Setting - Select LOCAL mode.	Press $\frac{\text { LOCAL }}{\text { REMOTE }}$	SEQ \& REF LEDs "OFF" \square	Fref still "ON"
Frequency Setting - Change reference value. - Write-in set value.	Change value by pressing either		Fref still "ON"
- Select output frequency monitor display.	Press DSPL		\square turns "OFF"; \square

Table 2-1. Test Run With Digital Operator - Continued

DESCRIPTION	KEY SEQUENCE	DIGITAL OPERATOR DISPLAY	FUNCTION LEDs DISPLAY
(3) Forward Run - Forward run (15 Hz)	Press RUN	RUN LED turns "ON" (after motor reaches set frequency)	Fout still "on" Lower 8 LEDs turn "ON" and "OFF" in rotating sequence
(4) Reverse Run - Select reverse run. - Write-in set value.		$\begin{aligned} & \text { FII } \\ & 1 \quad 1 \\ & 1 \\ & 1 \end{aligned}$	after third key- press, F / \mathbf{R} is "ON"
	Press ENTER	FELI	After motor decel erates to stop and begins reverse rotation, lower 8 LEDs turn "on" and "OFF" in reverse sequence
- Select output frequency monitor display.	Press $\underset{5 \text { times }}{\text { DSPL }}$	- IEIT	F/R turns "OFF"; after fifth key-press, Fout is "ON"
(5) Frequency Reference Value Change (15 Hz to 60 Hz) - Select frequency reference value display.	Press DSPL 7 times	1510	
- Change set value.	Change value by pressing either		after seventh keypress, Fref is "on"

Table 2-1. Test Run With Digital Operator - Continued

DESCRIPTION	KEY SEQUENCE	DIGITAL OPERATOR DISPLAY	FUNCTION LEDs DISPLAY
(5) (Continued) - Write-in set value	Press ENTER	\square	
- Select output frequency monitor display.	Press DSPL		Fref turns "OFF"; Fout turns "ON"
(6) Stop - Decelerates to a stop.	Press	RUN LED blinks while motor is being decelerated; then RUN LED turns "OFF" and STOP/RESET LED turns "ON"	Fout still "ON"

2.3 PRE-OPERATION CONSIDERATIONS

- After completing the start-up, connect the motor to the load.
- Additional control circuit wiring can be added, and parameters in the GPD 505 can be programmed to configure the drive system to your specific application, including "Remote" (2 -wire or 3 -wire) Control. (See Table 5-1 for listing of Programmable Features descriptions.)

2.4 STORAGE FUNCTION

The GPD 505 uses internal NV-RAM to store information when power is removed or in the event of a power failure. Therefore, when power is reapplied, operation will begin at the same state as when power was removed.

The following information is stored:

1. Last frequency command setting and forward/reverse selection from Digital Operator.
2. The sequence of failure conditions that occurred before power was removed.

Section 3. OPERATION AT LOAD

After completing the start-up, and programming of constants, turn off the AC main circuit power. Make additional wiring connections required for the external control functions selected by the constant programming. Connect the driven machine to the motor. Verify that the driven machine is in running condition, and that no dangerous conditions exist around the drive system.

OPERATING PRECAUTIONS

- Before applying a RUN command to the GPD 505, verify that the motor is stopped. If the application requires the capability of restarting a coasting motor, parameter n066 must be set to give DC Braking Time at Start.
- The motor cooling effect is reduced during low-speed running. The torque needs to be reduced in accordance with the frequency. For the reduction ratio, refer to the motor catalog or technical sheet.
- NEVER use a motor whose full-load amps exceeds the GPD 505 rating.
- When two or more motors are operated by one GPD 505, verify that the total motor current DOES NOT EXCEED the GPD 505 rating.
- When starting and stopping the motor, use the operation signals (RUN/STOP, FWD/REV), NOT the magnetic contactor on the power supply side.

Run the motor under load with control by the Digital Operator using the same procedure as for the Test Run (Table 2-1). If the Digital Operator is used in combination with external commands or external commands only are used, the procedure must be altered accordingly.

For preset starting (one-touch operation after setting the frequency), perform the following:

1. Set the frequency and press RUN. Motor accelerates, at the rate corresponding to the preset accel time, to the preset frequency. The accel time is set too short relative to the load if the RPM of the accelerating motor does not increase smoothly (stall prevention during acceleration is functioning) or if a fault indication is displayed on the Digital Operator.
2. Press STOP. Motor decelerates, at the rate corresponding to the preset decel time, to a stop. The decel time is set too short relative to the load if the RPM of the decelerating motor does not decrease smoothly (stall prevention during deceleration is functioning) or if a fault indication is displayed on the Digital Operator.

Section 4. DIGITAL OPERATOR

4.1 GENERAL

All functions of the GPD 505 are accessed using the Digital Operator. In addition to controlling motor operation, the operator can enter information into the GPD 505 memory to configure the GPD 505 to the application, either by using the Function LEDs, or by entering the Program (PRGM) mode.

4.2 DISPLAY AND KEYPAD

The Digital Operator has a 4 digit LED display. Both numeric and alpha-numeric data can appear on the display, but because 7-segment LEDs are used, the number of alphabetic characters is limited.

Indicator lamps and keys on the Digital Operator are described in Figure 4-1.

[^0]Figure 4-1. Digital Operator

4.2.1 Description of Function LEDs

By pressing the DSPL key on the Digital Operator while the drive is stopped or running, the operator can step to each of the sixteen Function LEDs and its associated display/setting function:

Fref - Frequency Reference Setting [0025]
Sets the GPD 505 operation speed (Hz), unless the drive has been programmed for REMOTE Mode operation with run from external analog speed reference signal. Programmable during run command.

Fout - Output Frequency Monitor
Displays the output frequency (Hz) at which the GPD 505 is currently operating. This is a monitor only function; the operator cannot change the displayed value by use of the keypad.

Iout - Output Current Monitor
Displays the level of output current (Amps) that the GPD 505 is currently producing. This is a monitor only function; the operator cannot change the displayed value by use of the keypad.
kWout - Output Kilowatt Monitor
Displays the output power (kW) that the GPD 505 is currently producing. This is a monitor only function; the operator cannot change the displayed value by use of the keypad.
F/R - FWD/REV Run Selection
Sets the rotation direction of the motor when a Run command is given by the Digital Operator keypad. Display of For = forward run, $r E u=$ reverse run. Use of this Function LED toggles between these two presets; the operator cannot enter a value.

Montr - Monitor Selection

Pressing ENTER allows access to the various Monitor parameters, U-01 through U-13. These are monitor only functions; the operator cannot change the displayed value. See paragraph 4.4 for list of Monitor parameters. Programmable during run command.
Accel- Acceleration Time 1 [nO19]
Sets the time (in seconds) it will take the drive to accelerate the motor from a stopped condition to maximum output frequency (i.e. sets the slope of the accel ramp). Programmable during run command.

Decel- Deceleration Time 1 [n021]
Sets the time (in seconds) it will take the drive to decelerate the motor from maximum output frequency to a stopped condition (i.e. sets the slope of the decel ramp). Programmable during run command.

RUN command ON \qquad
Vmtr - Motor Rated Voltage [nO11]
Sets the rated voltage (V) of the motor. (Part of V/f pattern setup; see paragraph 5.29.)
V/F - V/f Pattern Selection [no10]
Sets a preset V/f pattern or allows a custom V/f pattern to be set for the application. (Part of V/f pattern set-up; see paragraph 5.28.)
Fgain - Frequency Reference Gain [n046]
Sets the gain (\%) for the analog frequency reference, input at terminal FV and/or FI; see paragraph 5.10. Programmable during run command.
Fbias - Frequency Reference Bias [n047]
Sets the bias (\%) for the analog frequency reference, input at terminal FV and/or FI; see paragraph 5.10. Programmable during run command.

FLA - Motor Rated Current [n 032]

Sets the Amps used for detecting motor overload. This is normally set to the motor rated current value (nameplate full-load amps). When set to " 0.0 ", motor overload protection is disabled. The factory settings are listed in Appendix 1.

PID - PID Selection [n 084]
Setting data to " 0 " (factory setting) disables the PID function. Setting to " 1 " enables PID; setting to " 2 " enables the "Feed Forward" function; setting to " 3 " enables the "Inverted PID" function. See "PID Control", paragraph 5.22.
kWsav - Energy Saving Selection [n095] Setting data to " 0 " (factory setting) disables the energy saving function; and setting to " 1 " enables this function. See "Energy Saving Control", paragraph 5.9.

PRGM - Parameter Programming

Selects or reads data using parameter number ($\boldsymbol{n} \boldsymbol{X X X X}$). Data is displayed by pressing the ENTER key, and can be changed by pressing the "up arrow" or "down arrow" keys. Any changes can be saved by again pressing the ENTER key. Pressing the DSPL key exits the Programming mode.

4.3 BASIC PROGRAMMING

By using the Function LEDs on the Digital Operator, simple programming of the GPD 505 is possible. Following are examples of two methods for setting the acceleration time ($n 019$). The first example shows how to utilize the Accel Function LED, and the second example shows how to access parameter n019 through the PRGM Function LED.

EXAMPLE 1: Using Accel LED
Display

- Press the DSPL key repeatedly until the Accel LED turns on.
- To set the acceleration time to 5 seconds, press the "down arrow" key until the Digital Operator display reads " 5.0 ".
5.1
- Press the ENTER key.

EXAMPLE 2: Using PRGM LED

- Press the DSPL key repeatedly until the PRGM LED turns on.
- Press the "up arrow" key to access n019.

- Press the ENTER key. The current set value is displayed.
- To set the acceleration time to 15 seconds, press the "up arrow" key until the Digital Operator display reads " 15.0 ".
- Press the ENTER key.

Note: Once changed, data will blink until the ENTER key is pressed.

- Press the DSPL key until the Fref LED turns on.

4.4 MONITOR DISPLAYS

When using the Montr Function LED, a variety of information will appear on the Digital Operator display when each of the U-XX (display only) parameters is selected.

CONSTANT	MONITORED ITEM	DISPLAY EXAMPLE		
01	Frequency reference (Hz)	60.0		
02	Output frequency (Hz)	60.0		
03	Output current (A)	12.5		
04	AC output voltage (V)	230		
05	DC Bus voltage (VPN)	325		
06	Output power (kW)	(-) 12.5		
07	Input terminal status	III ${ }^{(1)}$		
08	Drive status	$\boldsymbol{\\|} \boldsymbol{\\|}{ }^{(2)}$		
09	Fault log (last 4 faults) ${ }^{(3)}$	oC		
10	Software number (last 4 digits): 10XXXX	3011		
11	Elapsed time meter (Hrs) (lower 4 digits, recorded in parameter n062)	3456		
12	Elapsed time meter (Hrs) (upper 2 digits, recorded in parameter n063)	12		
13	PID feedback (Hz)	45.0		

(1) Actual display appearance:

(2) Actual display appearance:

(3) See paragraph 6.2 for viewing of fault log contents.

Section 5. PROGRAMMABLE FEATURES

5.1 GENERAL

This section describes features of the GPD 505 which are defined by programmed settings in the various parameters in memory. Since most features use more than one parameter, the descriptions appear in alphabetical order by the function name. In Table 5-1, the functions are grouped into operational categories. To cross reference a particular parameter to the features to which it applies, see the listings in Appendix 1, or the Index.

Table 5-1. List of Features Defined By Parameters

FUNCTION	PARAGRAPH REFERENCE	PARAMETER(S)
SET-UP Initialization (Reset), 2-Wire or 3-Wire	5.23	n001
Drive Capacity, Parameters Affected By	Table A3-1	
Volts/Hertz Patterns, Standard	5.28	n010
Volts/Hertz Pattern, Custom	5.29	n012-n018
Input \& Output Voltage Setting	5.29	n003, n011
Thermal Motor Overload Protection	5.26	n032, n033
Digital Operator Display, Re-scaling	5.8	n024
Input Phase Loss Dectection	5.30	n080, n081
Output Phase Loss Detection	5.31	n082, n083
STARTING Accel Time	5.2	n019, n021
S-Curve Characteristics	5.3	n023
DC Injection Braking at Start	5.7	n017, n064, n066
STOPPING Stopping Method	5.25	n004
Decel Time	5.2	n020, n022
DC Injection Braking at Stop	5.7	n017, n064, n065
Local/Remote Changeover	5.15.1	n114
SPEED CONTROL Frequency Reference, Upper \& Lower Limits	5.12	n030, n031
Jog Reference	5.15	n029, n035-n039
Speed Reference Selection (Remote/Local)	5.19 A	n002
Multi-step Speed Setting	5.19 B	n025-n028, n035-n039
Sample/Hold	5.19G	n035-n039

FUNCTION	PARAGRAPH REFERENCE	PARAMETER(S)
SPEED CONTROL (continued) Up/Down Frequency Setting	5.19 H	n039
Modbus Control	5.16	n002, 1103 - $n 108$
PID Control	5.22	$\begin{gathered} \text { n002, n042, n043, } \\ \text { n084-n094 } \end{gathered}$
REVERSE Reverse Run Disabled	Table A1-1	n006
RUNNING Critical Frequency Rejection	5.6	n058, n059, n060
Carrier Frequency	5.5	n050
Speed Search	5.19 E	n035-n038, n052-n054
Speed Coincidence	5.20 B	n073
Energy Saving	5.9	n095-n102
Slip Compensation	5.23 .1	n008, n111
RUNNING IMPROVEMENTS Torque Compensation	5.27	n067, n068, n069
Stall Prevention	5.24	n070, n071, n072
PROTECTIVE FEATURES Momentary Power Loss Ride-thru	5.17	n051
Auto Restart	5.4	n056, n057
Frequency Reference Loss Detection	5.13	n045
Overtorque Detection	5.21	n074, n075, n076
Miscellaneous Protective Functions	5.16 .1	n112
DRIVE CONTROLS, INPUT Multi-function Analog Input (Auto/Manual)	5.11	n042, n043
Frequency Reference Bias and Gain	5.10	n046, n047
Multi-function Input Terminals	5.19	n035-n039
External Fault Terminals	5.19	n035-n039
DRIVE OUTPUT Multi-function Output Terminals	5.20	n040, n041, n073
Analog Monitor Output (Multi-function)	5.18	n048, n049
MONITOR DISPLAY Digital Operator Display Selection	5.8	n024

5.2 ACCEL/DECEL TIME

A. n019: Accel Time 1
n020: Decel Time 1
n021: Accel Time 2

Factory setting (each): 10.0 seconds
Range (each): 0.0 to 3600 seconds
n022: Decel Time 2
The GPD 505 incorporates two sets of individually programmable acceleration and deceleration times.
B. n035 thru n039: Multi-

Data 12 : Accel/Decel Time Selection

By programming data 12 into one of the multifunction parameters (n 035 thru nO 03), one of the multi-function input terminals (S2 thru S6) becomes a time selection input. When the input terminal (i.e. external contact) is open, Time 1 (n019/n020) is selected. When the input terminal is closed, Time 2 (n021/n022) is selected.

5.3 ACCEL/DECEL: S-CURVE CHARACTERISTICS

n023: Soft Start Characteristics
Factory setting: 1
Setting of this parameter determines the S-curve (starting) characteristics of the acceleration ramp.

0 = S-curve disabled
1 = S-curve
of 0.2 seconds
2 = S-curve time of 0.5 seconds
3 = S-curve time of 1.0 seconds

The following figure shows FWD/REV switching and acceleration \& deceleration to a stop with S-curve active.

5.4 AUTO-RESTART

A. n056: Number of Auto-Restart Attempts

Factory setting: 0
Range: $0-10$

When a fault occurs during operation, the GPD 505 can be programmed for an auto-restart operation to automatically reset the fault. Auto-restart operation will use the number of reset attempts set in this parameter, up to the maximum of 10 . When set to " 0 ", no auto-restarts will be attempted.

- The following faults can be automatically reset:

oC:	Overcurrent	GF:	Ground fault
ou:	Overvoltage (OV)	Uu1: Undervoltage (Power UV)	

- The following conditions WILL NOT initiate auto-restart:

1. oL, EF_, PUF or CPF_ fault.
2. When OC or UV occurs during deceleration.
3. When $\boldsymbol{n} 051$ is programmed to stop during momentary power failure (data = " 0 "). (See paragraph 5.17, MOMENTARY POWER LOSS RIDE-THRU.)

- The number of restart attempts available will be reset to the $\boldsymbol{n} \mathbf{0} 5 \mathbf{6}$ setting when:

1. 10 minutes has elapsed without a fault occurring.
2. The RESET key, or external Fault Reset push button, is pressed.
3. Power is removed from the Drive.
B. n057: Fault Contact Status During Auto-Restart

Factory setting: 0
Range: 0,1

This digit controls how the fault contact responds to a GPD 505 fault during the autorestart operation.
$\mathbf{0}=$ Fault contact will not actuate during auto-restart attempts
1 = Fault contact actuates during auto-restart attempts

Auto-Restart Operation Timing

5.5 CARRIER FREQUENCY

n050: Carrier Frequency Upper Limit

Factory Setting: See Table A3-1
Range: 1 to 6 (x 2.5 kHz); 7, 8, 9

The relationship between output frequency and carrier frequency is determined from the set value of $\boldsymbol{n} 050$
(a) For constant carrier frequency, set to " 1 ", " 2 ", " 3 ", " 4 ", " 5 ", or " 6 ".
(b) For synchronous mode, set $\boldsymbol{n} \mathbf{0 5 0}$ to " 7 ", " 8 ", or " 9 ". These setting values establish carrier frequencies of $12 \mathrm{f}, 24 \mathrm{f}$, or 36 f , respectively.

$\begin{gathered} \text { n050 } \\ \text { SETTING } \end{gathered}$	CARRIER FREQUENCY (kHz)		$\begin{aligned} & \text { SLOPE } \\ & \left(=\frac{\mathrm{Fc}}{\mathrm{Fo}}\right) \end{aligned}$	OUTPUT FREQUENCY (Hz)		MODE
	Maximum (Fcmax)	Minimum (Fcmin)		F1	F2	
1	2.5	2.5	0	NA	NA	constant
2	5.0	5.0	0	NA	NA	
3	8.0	8.0	0	NA	NA	
4	10.0	10.0	0	NA	NA	
5	12.5	12.5	0	NA	NA	
6	15.0	15.0	0	NA	NA	
7	2.5	1.0	12	83.3	208.3	SYNCHRONOUS
8	2.5	1.0	24	41.6	104.1	
9	2.5	1.0	36	27.7	69.4	

Maximum carrier frequency is dependent upon drive rating; see Appendix 1.
Carrier frequency should be decreased as the distance between the drive and the motor increases, to reduce capacitive coupling in the motor leads.

- For wiring distances up to 50 m (164 ft .), n 050 should be set to 15 kHz (data " 6 ") or less.
- For wiring distances from 50 m (164 ft .) to 100 m (328 ft .), $\boldsymbol{n} 050$ should be set to 10 kHz (data " 4 ") or less.
- For wiring distances greater than 100 m (328 ft .), n 050 should be set to 5 kHz (data " 2 ") or less.

5.6 CRITICAL FREQUENCY REJECTION

A. n058: Prohibited Frequency 1
n059: Prohibited Frequency 2

Factory setting (each): 0.0
Range (each): 0.0 to 400.0 Hz

These parameters allow programming of up to two prohibited frequency points for eliminating problems with resonant vibration of the motor/machine. This feature does not actually eliminate the selected frequency values, but will accelerate and decelerate the motor through the prohibited bandwidth.
B. n060: Prohibited Frequency Deadband

Factory setting: 1.0
Range: 0.0 to 25.5 Hz

This parameter determines the width of the deadband around each selected prohibited frequency point. The factory setting is " 1.0 ", which establishes a deadband of $\pm 1.0 \mathrm{~Hz}$.

EXAMPLE:
Vibration encountered between 30.0 and 36.0 Hz .
SOLUTION: Set n058 to " 33.0 ". This is the center of the problem frequency band.
Set n060 to " 3.0 ". This will cause the GPD 505 to reject all frequency command values between 30.0 and 36.0 Hz .

A frequency command in the deadband will be converted to the bottom value of the deadband, e.g. a command of 33 Hz would result in a run frequency of 30 Hz .

Note that if n058 $\leq \boldsymbol{n} 059$ is not satisfied, the Digital Operator displays the parameter setting error code " OPE6 ".

5.7 DC INJECTION BRAKING

n017: Minimum Frequency
n 064 : DC Injection Braking Current (\% of Drive Rated Current)
n065: DC Injection Time at Stop

Range: 0.1 to 10.0 Hz

Factory setting: $\mathbf{5 0} \%$
Range: 0 to 100%
Factory setting: 0.0 sec
Range: 0.0 to 10.0 sec

Factory setting: 0.0 sec
Range: 0.0 to 10.0 sec

DC injection can be used to stop a motor whose rotational direction is uncertain at start-up, or to help stop a coasting motor.

With ramp to stop enabled ($\boldsymbol{n 0 0 4}={ }^{\prime \prime} 0 "$), after a STOP command is received the GPD 505 controls motor deceleration according to the Decel Time setting, until output frequency reaches the DC injection braking start frequency (or Minimum Frequency, n017). Then the GPD 505 output is turned off and DC injection current is applied to the motor. The effective DC injection time and current should be set to provide adequate stopping without excessive motor heating. The DC injection voltage is determined by the DC injection braking current and motor impedance.

DC Braking Sequence

5.8 DIGITAL OPERATOR DISPLAY SELECTION

n024: Operator Display Mode
Reference and Indication
Factory setting: 0
Range: 0 to 3999
This parameter determines the scaling of the Digital Operator display, for both Output Frequency and all Frequency References.

DATA	DISPLAY
$\begin{gathered} 0 \\ \text { (factory } \\ \text { setting) } \end{gathered}$	Output frequency, in increments of 0.1 Hz .
1	Output frequency, in increments of 0.1%.
$\begin{gathered} 2 \text { to } 39 \\ \text { (no. of motor } \\ \text { poles) } \end{gathered}$	Motor synchronous speed ($\mathrm{P}=\frac{120 \times \mathrm{F}}{\mathrm{N}_{\mathrm{S}}}$) in increments of 1 RPM (3999 max). $\begin{aligned} & P=n o . \text { of motor poles } \\ & F=F r e q u e n c y \\ & N_{S}=\text { motor synchronous speed } \end{aligned}$ NOTE: If motor synchronous speed exceeds 3999 RPM, display holds at 3999.
$\begin{gathered} 40 \\ \text { to } \\ 3999 \end{gathered}$	Line speed or other parameter. Parameter value at maximum frequency (n 012) (include leading zeroes if necessary) Location of decimal point: $\begin{aligned} & \overline{1}=\overline{X X X} \\ & =X X X X \\ & 2=X X . X X \\ & 3=X . X X X \end{aligned}$ (See CAUTION on next page) EXAMPLE: To display Line Speed, based on 54.3 FPM at 60 Hz : n024 setting = " 1543 "

Exceptions to the general format are as follows:
$\frac{n 024}{}=\underline{\text { DISPLAY }}$
$" 1000 "=100.0$
$" 2000 "=10.00$
$" 3000 "=1.000$

CAUTION

When setting a value in n024, the decimal point position selected will also automatically affect all of the Frequency Reference Memory Settings (n025 thru n029; see Table A1-1).

EXAMPLE:
n024 factory setting: 0000
n029 (Jog) factory setting: 006.0 (6 Hz)
n024 changed to 2060
Decimal point at $\mathrm{X} \times . \mathrm{XX}$
n 029 setting becomes 0.06
Therefore, for 10.00 Hz Jog frequency, n 029 must be reprogrammed to 0.10

5.9 ENERGY SAVING CONTROL

n095: Energy Saving Selection

Factory setting: 0
Range: 0 or 1

To enable energy saving control, n095 must be set to " 1 ".
Since the parameters used in the energy saving control mode have been preset to the optimum values, it is not necessary to adjust them under normal operation. If your motor characteristics differ greatly from those of a standard motor, refer to the following description to change the parameters.
A. Energy Saving Control Mode
n096 : Energy Saving Gain K2

Factory setting: See Table A3-1
Range: 0.00 to 655.0

Use this gain when running in the energy saving control mode to calculate the voltage at which motor efficiency will be greatest, and set it as the output voltage reference. This value is preset to a typical standard motor value. As energy saving gain increases, output voltage also increases.
n097 : Energy Saving Voltage Lower Limit at 60 Hz
n098 : Energy Saving Voltage Lower Limit at 6 Hz

Factory setting: 50%
Range: 0 to 120%

Factory setting: 12%
Range: 0 to 25 \%

Sets the output voltage lower limit. If the voltage reference value calculated in the energy saving mode is below the specified lower limit, this lower limit value is used as the voltage reference value. The lower limit value is set to prevent stalling at light loads. Set voltage limits at 6 Hz and 60 Hz ; a value obtained by linear interpolation should be set to any limit values other than at 6 Hz or 60 Hz . Setting is made as a percentage of motor rated voltage.

5.9 ENERGY SAVING CONTROL Continued

B. Energy Saving Tuning

In the energy saving control mode, the optimum voltage is calculated according to load power, and this voltage is supplied to the load. However, since the set parameter may change due to temperature variations or using other manufacturer's motors, the optimum voltage may not necessarily be supplied. Automatic tuning controls the voltage so that highly efficient operation is maintained.
n099 : Time of Average kW

Factory setting: 1
Range: 1 to 200 (x 25 ms)

Sets adjustment time of kW saving. By increasing this value, the response time to a change in load is increased, which may prevent the system from oscillating. However, too long of a response time may starve the motor of voltage.
n 100 : Tuning Voltage Limit
Factory setting: 0 \%
Range: 0 to 100 \%
Limits the range to control voltage by tuning. Setting is made as a percentage of motor rated voltage. Tuning is disabled by setting this parameter to " 0.0 ".
n 101 : Tuning Step Voltage to 100% Output
n 102 : Tuning Step Voltage to 5\% Output

Factory setting: 0.5%
Range: 0.0 to 10.0%
Factory setting: 0.2 \%
Range: 0.0 to 10.0 \%

Sets voltage variation width of one tuning cycle. Setting is made as a percentage of motor rated voltage. By increasing this value, the rotating speed variation increases. This voltage variation width is set when starting tuning voltage is 100% and motor rated voltage is 5%. Other values may be obtained by linear interpolation.

5.10 FREQUENCY REFERENCE BIAS/GAIN

n046: Frequency Reference Gain

Sets the auto-speed frequency command gain, in increments of 1%.
n047: Frequency Reference Bias

Factory setting: 100 \%
Range: 0 to 200 \%

Factory setting: 0 \% Range: -100 to 100 \%

Sets the auto-speed frequency command bias, in increments of 1%.

BIAS

GAIN

NOTE: Frequency Reference Gain (n046) and Bias (n047) only affect the Analog Input selected by n042.

ADJUSTMENT PROCEDURE:

A. For 0-10 Vdc input (term. FV)

1. With no input, adjust Bias (n 047 setting) until an output of 0.0 Hz is obtained.
2. With full scale input, adjust Gain (n046 setting) until an output of 60.0 Hz (or other desired max. output frequency) is obtained.
B. For $4-20 \mathrm{~mA}$ input (term. FI)
3. With 4 mA input, adjust Bias (n 047 setting) until an output of 0.0 Hz is obtained.
4. With 20 mA input, adjust Gain (n 046 setting) until an output of 60.0 Hz (or other desired max. output frequency) is obtained.

NOTE
Follow the same adjustment procedure for other desired frequency setpoints.
C. For inverse-acting frequency reference

1. Begin with n046\&n047 settings as shown below.
2. Fine tune as indicated in A or B above.

Frequency reference inputs: terminals FV \& FC - 0-10 VDC terminals FI \& FC $-4-20 \mathrm{~mA}$

n042 : Auto Analog Input Selection

Factory setting: 0
Range: 0 or 1

To input an auto frequency reference from external terminals, program n 042 to data " 0 " for a voltage reference (0 to 10 V) or to " 1 " for a current reference (4 to 20 mA).

Setting	Auto Frequency Reference Terminal	Input Level
0	FV	0 to 10 V input
1	FI	4 to 20 mA input

NOTE: Parameters n046 and n047 affect the Analog Input selected by n042.
n043: Manual Analog Input Selection

Factory setting: 1
Range: 0 or 1

To change the control circuit terminal Fl input level, program no43.

Setting	FI Terminal input Level
0	0 to 10 V input
1	4 to 20 mA input

NOTE: In addition to setting parameter n043 to " 0 " for a voltage input, jumper J 1 on the drive Control PCB must be cut.

Examples of wiring the drive for frequency references from various sources are shown on the next page.
A. Speed pot or 0-10VDC signal only:

B. $4-20 \mathrm{~mA}$ signal only:

C. $0-10 \mathrm{VDC}$ signal (auto) and speed pot (manual):

D. $4-20 \mathrm{~mA}$ DC signal (auto) and $0-10 \mathrm{VDC}$ signal or speed pot (manual):

5.12 FREQUENCY REFERENCE UPPER \& LOWER LIMITS

n030: Frequency Reference Upper Limit
Factory setting: 100 \%

Range: 0 to 109 \%
n 031 : Frequency Reference Lower Limit
Factory setting: 0 \%
Range: 0 to 100 \%
These two parameters set the range for the frequency command signal. Each is set, in increments of 1\%, as a percentage of maximum frequency (Fmax; nO12) as established by either the selected standard V/f pattern or custom V/f pattern.

NOTE: All references are affected by the upper and lower limit points.

EXAMPLE:

n012 = " 60 " Hz (100\%)
n030 = " $80 " \%=48 \mathrm{~Hz}-$ Max. speed
$n 031=" 10 " \%=6 \mathrm{~Hz}-$ Min. speed

5.13 FREQUENCY REFERENCE - LOSS DETECTION

n 045 : Frequency Reference Loss Detection

Factory setting: 0 (disabled)
Range: 0 or 1

The reference loss detection function is either enabled or disabled, based on the setting of n045. When enabled (data " 1 "), the reference loss detection compares the change in reference with respect to time. If the reference decreases by 90% in more than 0.4 seconds, the GPD 505 will decelerate to the set reference; if the reference decreases by 90% in less than 0.4 seconds, the GPD 505 will continue to operate at 80% of the output frequency. To regain control of output frequency, either exceed the set reference (80% of reference) or initiate a STOP command. If Auto Reference is less than Fmax ($\boldsymbol{n} 012$) x .05, this function is not performed.

Time Chart

5.14 FREQUENCY REFERENCE RETENTION

n044 : Frequency Reference Retention

Factory setting: 0
Range: 0 or 1

Useable with the Up/Down or Sample/Hold commands when either is used as a multifunction contact input. To retain the held frequency reference in $\boldsymbol{n} 025$ when power is removed, set n044 to " 1 ".

Setting	Description
0	Not retained
1	Held reference retained in Frequency Reference $1($ n025 $)$

5.15 JOG REFERENCE

n029: Jog Reference
n035 thrun039: Multi-function Inputs

Factory setting: 6.0 Hz
Range: 0.0 to 400.0 Hz
Data 11 : Jog Selection
(Term. S2-S6)
When jog operation is selected (by external Jog and Run signals), the GPD 505 output will ramp to the output level set by this parameter.

When an external Jog signal is present, it will override the existing operation mode and the GPD 505 will ramp to the level set by this parameter.

EXAMPLE:

OPERATION BY REMOTE SIGNAL INPUT (RUN \& JOG)

Also see descriptions of MULTI-FUNCTION INPUT TERMINALS, paragraph 5.19.

5.15.1 LOCAL/REMOTE CHANGEOVER

n 114 : Local/Remote Changeover

Factory setting: 1
Range: 0 or 1

When n114 = 1, if the STOP key of the Digital Operator is pressed during operation at external terminal and function is changed from "Local" to "Remote", the motor runs after changeover.

When n114 = 0, if the Run comand is changed over by n002, or "Local/Remote" button, the motor does not stop until a Stop command is input.

5.16 MODBUS CONTROL

The GPD 505 can perform serial communication by using a programmable controller (PLC) and MODBUS ${ }^{\mathrm{TM}}$ protocol. MODBUS is composed of one master PLC and 1 to 31 (maximum) slave units (GPD 505s). In serial communication between the master and slaves, the master always starts transmission and the slaves respond to it.

The master communicates with one slave at a time. Address numbers are assigned to each slave in advance, and the master specifies an address to communicate with. The slave which receives the command from the master executes the function, and then responds to the master.
A. Communication Specifications

- Interface : RS-232C (standard); RS-485, RS-422 (option requires communication interface card CM086)
- Synchronization
: Asynchronous
- Transmission parameters
- Protocol
: Baud rate - Selectable from 2400, 4800, 9600 BPS (n 107)
Data length - Fixed to 8 bits
Parity - Parity / no parity, even / odd selectable (n108)
Stop bit - Fixed to 1 bit
- Maximum number to units to be connected
: MODBUS
: 31 units (when RS-485 is used)

B. Sending/Receiving Data

Data that can be sent and received are run/stop commands, frequency reference, fault reset, drive status, and setting and reading of parameters.
n002 : Operation Mode Selection

Factory setting: 3
Range: 0 to 8

Select the run command and frequency reference input method in $\boldsymbol{n} 002$. To provide a run command and frequency reference by communication, set this data to " 4 " thru " 8 ". Monitoring of run status, parameter setting/reading, fault reset and multifunction input command from the PLC are enabled. The multi-function input command is OR'ed with the command input from control circuit terminals S2-S6.
n035 thru n039 : Multi-function Inputs
(Term. S2-S6)

Data 6 : Serial communication/ Digital Operator

Selects operation by serial communication or by external terminal. If the status of this command input is changed while the drive is running, the selection is ignored until the next time the drive is stopped.

Open : Run according to the setting of Operation Mode Selection (n 002)
Closed : Run by frequency reference and run command from serial communication

EXAMPLE: n002 setting is " 3 ".
Open : Run by frequency reference from control circuit terminals FV, FI and run command from control circuit terminals $\mathrm{S} 1, \mathrm{~S} 2$.
Closed : Run by frequency reference and run command from serial communication.
n 105 : Modbus Frequency Resolution
Factory setting: 0
Range: 0 to 3
The frequency resolution from the PLC and in the frequency reference and output frequency monitor (by communication) are selected with this parameter. The output frequency resolution of the GPD 505 is 0.1 Hz . Even if the Modbus resolution is changed to 0.01 Hz in $\boldsymbol{n} 105$, the value in the hundredths digit of 0.01 Hz of the received frequency reference is rounded off internally. When $30,000 / 100 \%$ in units of 0.1% is selected, the value is also rounded off.
n 106 : Modbus Slave Address

Factory setting: 0
Range: 0 to 31

Each slave GPD 505 on the same transmission line must be given a unique address.
n 107 : Modbus Baud Rate

Factory setting: 2
Range: 0 to 2

Selects the baud rate, as indicated by the following table:

Setting	Baud Rate (BPS)
0	2400
1	4800
2	9600

n 108 : Modbus Parity Selection

Factory setting: 1
Range: 0 to 2

Selects the parity, as indicated by the following table:

Setting	Parity
0	None
1	Even
2	Odd

NOTE: To change the values set in n 106 thru $n 108$ and enable the new settings, it is necessary to turn OFF power to the Drive, then turn it ON again.
n 103 : Modbus Time Out Detection

Factory setting: 1
Range: 0 or 1

If time between Modbus messages exceeds 2.0 seconds, the drive will respond according to the setting of $\boldsymbol{n 1 0 4}$. A setting of " 0 " disables this fault condition.
n 104 : Stop Method on Modbus Communication Error (CE)

Factory setting: 1 Range: 0 to 3

If communications error exists, drive will respond according to the following table:

Setting	Description
0	Ramp to Stop - Decel 1 (fault)
1	Coast to Stop (fault)
2	Ramp to Stop - Decel 2 (fault)
3	Continue operation (alarm)

5.16.1 MISCELLANEOUS PROTECTIVE FUNCTIONS

n 112 : Operator Connection Fault Detection Selection

Factory setting: 0
Range: 0 or 1

Set this parameter to " 1 " only if the drive should shut down immediately if the Digital Operator is disconnected while the drive is running. When set to " 0 ", the fault will not occur until after the drive has been stopped.

5.17 MOMENTARY POWER LOSS RIDE-THRU

n 051 : Momentary Power Loss Ride-thru Protection

```
0 = Disabled (Factory setting)
1 = Enabled - 2 sec . power loss
        ride-thru
2 = Enabled - indefinite power loss
    ride-thru, provided control
    power is maintained
```

The setting of this parameter either enables or disables the ride-thru feature of the GPD 505. If disabled, the unit will stop immediately whenever a power loss occurs. If enabled, the GPD 505 will continue to operate during a momentary power loss of up to 80%, but if the loss exceeds the identified time period, the GPD 505 will stop.

n 055 : Power Loss Ride-Thru
 Deactivation Time

Factory setting: See Table A3-1
Range: 0.0 to 2.0 seconds

If the loss exceeds the length of time identified by $\boldsymbol{n} \mathbf{0 5 5}$, the GPD 505 will stop. The factory setting of this parameter, in 0.1 second increments, is related to the GPD 505's rating.

Note that the RUN command must be maintained throughout the ride-thru period. If $\boldsymbol{n} 051$ is set to " 2 ", a " Uu" alarm is displayed during power loss, and no fault signal is output at terminals M1 \& M2 or MA, MB \& MC.

5.18 MULTI-FUNCTION ANALOG MONITOR OUTPUT (Term. AM \& AC)

n048: Multi-function Analog Output
Factory setting: 0
The monitor output provides a $0-10 \mathrm{Vdc}$ signal proportional to either output frequency, output current, output voltage reference, or output power between terminals AM \& AC:
$\begin{aligned} \mathbf{0}= & 0-10 \mathrm{Vdc} \text { proportional } \\ & \text { to output frequency }\end{aligned}$
$2=0-10 \mathrm{Vdc}$ proportional to output power
$3=0-10 \mathrm{Vdc}$ proportional to DC bus voltage.
n 049 : Analog Monitor Gain

> | Factory Setting: 1.00 |
| :--- |
| Range: 0.01 to 2.00 |

This constant is used to calibrate, in increments of 0.01, either the frequency, current or volt meter connected to terminals AM \& AC.

n035: Terminal S2 Function
n036: Terminal S3 Function
n037: Terminal S4 Function
n038: Terminal S5 Function
n039: Terminal S6 Function

Factory settings:	2-Wire control		
	3-Wire control		
$n 035$	$\mathbf{0}$	$\mathbf{1}$	
$n 036$	$\mathbf{2}$	$-\mathbf{2}$	
$n 037$	$\mathbf{4}$	$\mathbf{2}$	
$n 038$	9	$\mathbf{4}$	
$n 039$	$\mathbf{1 0}$	$\mathbf{9}$	

These five parameters select the input signal functions for terminals S2 thru S6, and can be independently set.

Parameter settings are checked whenever power is applied to the GPD 505, or upon exiting Program mode. A parameter set value failure (OPE3) will occur if any of the following conditions are detected among these five parameters:

(1) Two or more of the parameters contain the same value.
(2) Both Speed Search functions (data 15 and 16) have been selected.
(3) Both the Sample/Hold (data 22) and Up/Down (data 25)functions have been selected.
(4) The Up/Down (data 25) or the Loop Test (data 26) functions have been entered into any parameter n035 thrun038.

Table 5-2 lists the possible data setting values for these parameters, with the function and a brief description for each one.

For a few of the data settings, a more detailed description is given on the following pages; for others, the description is given in other PROGRAMMABLE FEATURES paragraphs.

5.19 MULTI-FUNCTION INPUT TERMINALS (Term. S2-S6)

Table 5-2. n035 thru n039 Data Settings

DATA	FUNCTION	DESCRIPTION *
0	Reverse Run/Stop command (for 2-wire control)	MUST BE SET ONLY IN n 035 . Redefines terminals: $\begin{aligned} & \text { S1 = Run/Stop Forward; } \\ & \text { S2 = Run/Stop Reverse } \end{aligned}$
1	FWD/REV selection (for 3-wire control)	MUST BE SET ONLY IN n 03 5. Redefines terminals: S1 = Run; S2 = Stop; S3 = FWD/REV select
2	External fault (N.O. contact input)	Drive trips; Digital Operator displays " EFX" where X is $2-6$, corresponding to the terminal, S2-S6, which is receiving the fault input signal
3	External fault (N.C. contact input)	
4	Fault Reset	Resets fault, only if RUN command is not present
5	Remote/Local selection	Open = Operates according to setting of n002 Closed = Operates from keys of the Digital Operator See paragraph 5.19A
6	GPD 505 operation \& reference/ serial communication selection	Open = Operates according to setting of n002 Closed = Operates from serial communication See paragraph 5.16
7	Quick Stop	$\begin{aligned} & \text { Open = Stop according to setting of n004 } \\ & \text { Closed = Ramp to stop by Decel Time } 2\left(\begin{array}{ll} \text { O } 022 \end{array}\right) \end{aligned}$
8	Auto/Manual frequency reference selection	Open = Frequency reference from terminal FV Closed = Frequency reference from terminal FI
9	Multi-step frequency ref. select 1	See paragraph 5.19B
10	Multi-step frequency ref. select 2	
11	Jog selection	Closed $=$ Jog selected See paragraph 5.15
12	Accel/decel time selection	Open = Accel/decel by n019/n020 Closed = Accel/decel by n021/n022 See paragraph 5.2
13	External base block (N.O. contact input)	Closed = Shuts off GPD 505 output (frequency command is held) See paragraphs 5.19C, 5.19D
14	External base block (N.C. contact input)	
15	Speed Search 1	$\begin{aligned} & \text { Closed * }=\text { Speed Search operation from } \\ & \text { maximum frequency } \\ & \text { See paragraph } 5.19 \mathrm{E} \end{aligned}$
16	Speed Search 2	Closed * = Speed Search operation from set frequency See paragraph 5.19E

Table 5-2. no35 thrun039 Data Settings - Continued

DATA	FUNCTION	DESCRIPTION *
17	Programming enable	$\begin{aligned} & \text { Open }=\begin{array}{c} \text { Programming from Digital Operator or } \\ \text { serial communication is enabled } \end{array} \\ & \text { Closed }=\text { All programming is disabled } \end{aligned}$
18	PID integral value reset	Closed = Value of $\ln 087)$ is reset to " 0 " See paragraph 5.22I
19	PID control disable	Closed = PID control is disabled - setpoint becomes frequency reference See paragraph 5.22I
20	Timer function	See paragraph 5.19F
21	External overheat	Closed $=\mathbf{o H} 3$ blinks on the Digital Operator, and operation continues (minor fault)
22	Analog reference sample/hold	Open = Hold frequency reference Closed = Sample frequency reference See paragraph 5.19G
23	Inertia ride-thru command (N.O. contact input)	Closed = Inertia ride-thru is enabled
24	Inertia ride-thru command (N.C. contact input)	Closed = Inertia ride-thru is disabled
25	Up/Down function	See paragraph 5.19H
26	Loop Test	See paragraph 5.19J
27	PID Changeover	See paragraph 5.19K

* All contact closures must be maintained, except for speed search, which may be momentary (see paragraph 5.19E).

A. Data 5: Remote/Local

Set parameter n002 to data " 3 " to select external inputs as the source for frequency reference and operation commands. The use of a Remote/Local command input allows switching between the Digital Operator control and the external terminal input signals, without the need to re-program $\boldsymbol{n} 002$. If the status of the Remote/Local command input is changed while the drive is running, the Remote/Local operation selection is not completed until the next time the GPD 505 is stopped.

Closed = Controlled locally (Digital Operator)
Open $=$ Controlled remotely (external terminal inputs, for Start/Stop and frequency reference)
B. Data 9: Multi-step Frequency Ref. Select 1

Data 10 : Multi-step Frequency Ref. Select 2
n025 thru n029: Frequency Reference 1-4 and Jog Reference

In order to use multi-step frequency presets, parameters n038, n039 \& n 037 must be programmed accordingly for 2-Wire or 3-Wire control. (Parameter n002 must be set for frequency reference from Digital Operator (data " 0 ", " 1 ", or " 7 ") .)

To use the maximum of 5 preset frequencies, n038 must be set to " 9 " (Multi-step Frequency Ref. Select 1), n 039 must be set to " 10 " (Multi-step Frequency Ref. Select 2), and n037 must be set to " 11 " (Jog).

Note that the remote frequency reference (terminal FV) can be substituted for Freq. Ref. 1 by selecting the Remote mode, either with the LOCAL/REMOTE key on the Digital Operator, or programming one of the Multi-function inputs for Remote/Local (data " 5 ").

Multi-step (5 preset frequencies) in 2-Wire control

PARAMETER and NAME	EXTERNAL TERMINAL			
n024 Frequency Ref 1	0	0	0	0
n025 Frequency Ref 2	0	0	0	1
n026 Frequency Ref 3	0	0	1	0
n027 Frequency Ref 4	0	0	1	1
n028 Frequency Ref 5	0	1	0	0
n029 Frequency Ref 6	0	1	0	1
n030 Jog Reference	1	X	X	X

$1=$ Closed (ref terminal SC) $0=$ Open (ref terminal SC)

See next page for timing chart of multi-step speed operation.

NOTE: The Jog command takes priority over multi-step frequency select inputs.

Typical Multi-step Speed Operation
C. Data 13: External Base Block by N.O. Contact

- When either the Forward Run command or Reverse Run command is present, and the external Base Block command is applied (i.e. contact closed), coast stop is accomplished (after a 20 msec delay), while the frequency command is maintained. When the Base Block command is removed, the drive will recover in a manner similar to that of Speed Search operation.

- When both the Forward Run command and Reverse Run command are open, and the external Base Block command is applied (i.e. contact closed), coast stop is accomplished and after a 20 msec delay the frequency command is changed to 0 Hz . When the Base Block command is removed, the drive will remain in stopped condition until Forward Run command or Reverse Run command is again applied.
- When external Base Block command is active, a blinking " bb" will be displayed on the Digital Operator.

D. Data 14: External Base Block by N.C. Contact

Base block operation is the same as described above, except that the Base Block contact must be open to be recognized.
E. Data 15: Speed Search From Max Frequency

Data 16 : Speed Search From Set Frequency
A multi-function input terminal is utilized to activate speed search. When the external speed search command is closed, the base is blocked for the min. base block time, n 053 , then the speed search is made. The operation depends on the set value.

IMPORTANT

Set values 15 and 16 CANNOT be selected in combination.

- When 15 is set, the speed search begins with the maximum frequency.
- When 16 is set, the speed search begins with the frequency command command that has been set after the search command was received.

Speed Search Operation Timing

n 052 : Speed Search Deactivation Current Level

Factory setting: 110%
Range: 0 to 200%

After power recovery, if the GPD 505 output current is larger than the set value of $\boldsymbol{n} 052$, speed search is started, using a decel rate of 2.0 sec. When GPD 505 output current is lower than the set value of $\boldsymbol{n} \mathbf{0 5 2}$, speed search is complete and acceleration or deceleration is continued at the normal rate (n019-n022) to set frequency.
n053: Minimum Baseblock Time

Factory setting: See Table A3-1
Range: 0.0 to 25.5 sec .

When a momentary power loss is detected, the GPD 505 output transistors are disabled for a period of time determined by the setting of $n 053$. The $\boldsymbol{n} 053$ setting should represent the time required for the motor residual voltage to go to zero.

When the momentary power loss time exceeds the minimum base block time, the speed search operation is started immediately after power recovery.

WHEN MIN. BASEBLOCK TIME IS LONGER THAN MOMENTARY POWER LOSS TIME
MOMENTARY POWER
LOSS TIME

MIN.
BASEBLOCK TIME

GPD 505
BASEBLOCK TIME

WHEN MIN. BASEBLOCK TIME IS SHORTER THAN MOMENTARY POWER LOSS TIME
MOMENTARY POWER
LOSS TIME

MIN.
BASEBLOCK TIME

GPD 505
BASEBLOCK TIME

n054: V/f During Speed Search

Factory setting: See Table A3-1
Range: 0 to 100 \%

To prevent a fault such as OC from occurring during the speed search operation, V/f must be set to a value lower than that required during normal operation.

V/f during speed search $=\mathrm{V} / \mathrm{f}$ at normal operation \times n 054

5.19 MULTI-FUNCTION INPUT TERMINALS (Term. S2-S6) Continued

F. Data 20: Timer Function
n040 or n041: Multi-function Output Terminals
Data 11 : Timer Function
(MA, MB, \& MC, or M1 \& M2)
n077 : On-delay Timer
n078 : Off-delay Timer

Factory setting: 0.0 sec .
Range: 0.0 to 25.5 sec .
Factory setting: $\mathbf{0 . 0} \mathbf{~ s e c}$.
Range: 0.0 to 25.5 sec .

When the timer function input is "closed" for longer than On-delay Timer ($\boldsymbol{n} \mathbf{0 7 7}$), the timer function output closes.

When the timer input is "open" for longer than Off-delay Timer ($\boldsymbol{n} \mathbf{0 7 8}$), the timer function output opens.

As can be seen, the timer function must be programmed as both a multi-function input and an output to be effective.

5.19 MULTI-FUNCTION INPUT TERMINALS (Term. S2-S6) Continued

G. Data 22: Sample/Hold Command (Accel/Decel Speed Prohibit)

This function applies only to an analog voltage or current input used as a frequency reference at terminals FV or FI.

If the Sample/Hold command is present (contact is closed) for more than $0.1 \mathrm{sec} .$, the frequency reference will follow (sample) the analog signal, e.g. if 5 V corresponds to 50% frequency, a 5 V analog signal will produce 50% frequency reference if the Sample/Hold command is present.

If the Sample/Hold command is removed (contact is opened) while the Drive is still in Run condition, the frequency reference is held at the level it was at the time the Sample/Hold command was removed, e.g. the frequency reference would remain at 50%, even though the analog signal increased to 8 V .

Sample/Hold Function Timing

H. Data 25 : Up/Down Function

Programming data " 25 " for n039 (multi-function input terminal) allows the inputs to be used for Up/Down frequency setting.

NOTES:

1. oPE3 fault will occur if data " 25 " is programmed into n035 thru n038.
2. Parameter n038 will display " -- " when n039 is set to " 25 ".
3. Jog has priority over Up/Down.
4. Up/Down has priority over Multi-step Frequency inputs.
5. Up/Down is ineffective when operation is from the Digital Operator.
6. Upper limit speed is set by the formula:

$$
n 012 \text { (Fmax) x } \frac{n 030 \text { (Freq. Ref. Upper Limit) }}{100}
$$

7. Lower limit speed is either the reference from external terminals FV or FI , or from n031, Frequency Reference Lower Limit, whichever is higher.
8. Upon a Forward (or Reverse) Run command, the drive will operate at the lower limit speed, until an UP command is given.

EXAMPLE:

n039 Data 25 : Up/Down function

INPUT SIGNAL		
Term. S5	Term. S6	

5.19 MULTI-FUNCTION INPUT TERMINALS (Term. S2-S6) Continued

Up/Down Frequency Setting Timing
J. Data 26 : Loop Test

Checks operation of the serial interface circuit.
To use this test function:

1. Apply power to drive.
2. Set Multi-function Contact Input Selection ($\boldsymbol{n} 039$) to data " 26 ".
3. Remove power from drive.
4. Close terminal S 6 to SC .
5. Short connector 2CN, pins $1 \& 2$ together (unless using Communication Interface Card).
6. Loop test is started by reapplying power to the drive.

The Digital Operator displays the frequency reference if the loop test is successful, and a CE fault if not.
K. Data 27 : PID Changeover

Programming data " 27 " for n 039 alows the PID input characteristic changeover to function as follows:

Multi-function input: Open = As usual Closed = Polarity of Deviation is changed over

5.20 MULTI-FUNCTION OUTPUT TERMINALS (Term. MA, MB \& MC; M1 \& M2)

n040: Contact Output (external terminals MA, MB \& MC)
n041 : Contact Output (external terminals M1 \& M2)

A Form-C contact, or a N.O. contact, can be programmed to change states during any of the conditions indicated in Table 5-3.

FACTORY SETTING IS FOR
FAULT
(DATA " 0 ")

FACTORY SETTING IS FOR SIGNAL
DURING OPERATION
(DATA " 1 ")

Table 5-3. Multi-function Output Terminals

Set Value	Description	
	Condition	Signal Level
0	Fault	Closed = GPD 505 fault has occurred (except CPF0, CPF1)
1	During operation	Closed = GPD 505 is operating
2	Speed at set frequency	Closed = Frequency Reference = output frequency See description on next page
3	Speed coincidence	Closed = Speed at set frequency and output frequency $=\boldsymbol{n} 073$ See description on next page
4	Frequency detection - low	Closed = Output frequency $\leq \boldsymbol{n 0 7 3}$. See description on next page
5	Frequency detection - high	Closed $=$ Output frequency \geq n073 . See description on next page
6	Overtorque detection (N.O. contact)	Closed = Overtorque detected
7	Overtorque detection (N.C. contact)	Open = Overtorque detected
8	During coast to stop	Closed = GPD 505 output base block is active; motor is coasting
9	Frequency or Run reference mode	Open = Frequency or Run Command by ext. input; Closed = Frequency or Run Command by Digital Operator
10	Operation ready	Closed = GPD 505 is ready for operation (not faulted)
11	Timer function	See paragraph 5.19F
12	Auto-restart	Closed = During auto-restart operation
13	OL warning	Closed $=150 \%$ current for 48 sec. (OL1) or 80% time (OL2)
14	Frequency reference missing	Closed = Frequency reference is missing. See paragraph 5.13
15	Serial communication	Closed = Command from serial communication
16	PID feedback loss	Closed = Feedback value < detection level (n093) for longer than detection delay time (n094)
17	OH1 warning	Closed $=$ Heatsink temperature $\geq 90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$

n073: Speed Coincidence Frequency / Frequency Detection Level

Factory setting: 0.0 Hz
Range: 0.0 to 400.0 Hz
Speed coincidence is used to control an output contact at terminals MA or MB (with respect to terminal MC), or terminals M1 \& M2, when selected by n040 and n041.
n040 or n041
Data 2, 3, 4 or 5
The output contact will close, dependent upon the data programmed into n040 or no41. See the appropriate figure below for operation.

B. Speed Coincidence

(setting: n040 orn041 = " 3 ")

C. Frequency Detection - Low (setting: n040 orn041 = " 4 ")

D. Frequency Detection - High (setting: n040 orn041 = " 5 ")

n113: Frequency Agreed Detection Width

Factory setting: 2.0 Hz
Range: 0.0 to 25.50 Hz

This Detection Width setting is used to establish the frequency level at which the output contact activates, when n040 or n041 is set to " 2 " or " 3 ".

5.21 OVERTORQUE DETECTION

Overtorque detection is used to compare GPD 505 rated output current with the overtorque detection level. When the output current is equal to or greater than the defined level, an overtorque condition exists. This will be indicated as an oL3 fault on the Digital Operator. This feature can be selected to operate over a wide range of conditions.
A. no74: Overtorque Detection

Factory setting: 0
This constant determines whether the overtorque detection function of the GPD 505 is enabled, under what conditions it will detect for overtorque, and what operation it will perform after detecting an overtorque.

Setting	Overtorque Detection	Operation After Detection	Detection Condition
0	Disabled	-	-
1	Enabled	Continues	Only at set frequency
2	Enabled	Continues	At all times except during stop- ping or DC injection braking
3	Enabled	Coast to stop	Only at set frequency 4 Enabled
Coast to stop	At all times except during stop- ping or DC injection braking		

- For overtorque detection during accel or decel, set to " 2 " or " 4 ".
- For continuous operation after overtorque detection, set to " 1 " or " 2 ". During detection, the Digital Operator displays and"oL3" alarm (blinking).
- To stop the drive at an overtorque detection fault, set to " 3 " or " 4 ". At detection, the Digital Operator displays an " oL3 " fault.
- To output an overtorque detection signal, set output terminal function selection (n 40 or n41) to " 6 " or " 7 ".
B. n075: Overtorque Detection Level

Factory setting: 160 \%
Range: 30 to 200 \%

This is the reference point for determining that an overtorque condition exists. Set as a percent of GPD 505 rated current (see Appendix 2).
C. n 076 : Overtorque Detection Time

Factory setting: 0.1 sec .
Range: 0.0 to 10.0 seconds

Determines how long an overtorque condition must exist before another event will occur, e.g. coast to stop, multi-function output change of state, or 0 L 3 warning or fault display.

5.21 OVERTORQUE DETECTION

D. n040: Multi-function Output 1-Contact
(terminals MA, MB \& MC)

Data 6 or 7 : Overtorque Detection

n041: Multi-function Output 2 - Contact
(terminals M1 \& M2)
A Form-C contact, or a N.O. contact, can be programmed to change states during an overtorque detection condition.

EXAMPLE OF OVERTORQUE DETECTION

n074 setting: 3 - Overtorque enabled, only at set frequency, coast to stop
n041 setting: 6 - Output contact programmed for overtorque detection
n075 setting: 110\% - Level at which overtorque is sensed
n076 setting: 1.0 s - Time delay before overtorque event occurs

Overtorque Detection Timing Diagram

5.22 PID CONTROL

The Proportional, Integral and Derivative control function provides closed-loop control, or regulation, of a system process variable (pressure, temperature, etc.). This regulation is accomplished by comparing a feedback signal to a setpoint reference, which results in an error signal. The PID control algorithm then performs calculations, based upon the PID parameter settings (n084 thru n094), on this error signal. The result of the PID algorithm is then used as the new speed reference.

A. n084 : PID Selection

Factory setting: 0
Range: 0, 1, 2

Using this parameter, PID control can be enabled, feed forward function can be activated, or the PID Feedback can be inverted.

Setting	Description
0	PID disabled
1	PID enabled (Deviation is D-controlled)
2	PID with feed forward (Feedback value is D-controlled)
3	Inverted PID Feedback signal

5.22 PID CONTROL Continued

B. Setpoint Reference Selection

n 002 : Operation Mode Selection
n 042 : Auto Analog Input Selection
Factory setting: 3
Range: 0 to 8
Factory setting: 0
Range: 0 or 1
n025 thru n 029 : Multi-step Frequency Presets

	Factory setting: 3
	Range: 0 to 8
	Factory setting: 0
	Range: 0 or 1
$\begin{aligned} \text { Factory settings: } n 029 & =6.0 \\ \text { all others } & =0.0\end{aligned}$	
Rang	(ea): 0.0 to 9999

Select the PID control Setpoint Reference from either the external terminal FV (for 0-10 VDC), or from multi-step speed parameters, n025 thru n029.

- External terminal FV: Set n002 to data " 2 " or " 3 ".
- Multi-step speed parameters: Set n002 to data " 0 " or " 1 ". (See Operation Mode Selection, page A1-1, and Multi-step Speed Setting, paragraph 5.19B.)

C. Feedback Signal Selection

n 043 : Manual Analog Input Selection

Factory setting: 1
Range: 0 or 1

Select the PID control Feedback Signal from external terminal FI for either a current signal (4-20mA DC) or a voltage (0-10 VDC).

- Current signal: Set n043 to data" 1 ".
- Voltage signal: Set n043 to data " 0 ".
(Must also cut jumper J1 on Control PCB.)

D. Inverse PID

NOTE: The following applies only when n084 = " 3 ".
If using inverse PID control ($\boldsymbol{n} 084=" 3 "$), the following adjustments need to be made:

- If a $0-10 \mathrm{VDC}$ reference is used to determine the setpoint, exchange the values in n046 and n047.

EXAMPLE: If the Frequency Reference Gain (n046) = " 100 " \% and the Frequency Reference Bias (n047) = " 0 " \%, these parameters will now need to be set as follows:

$$
\text { n046 = " } 0 \text { " \% n047 = " } 100 \text { " \% }
$$

5.22 PID CONTROL Continued

- If the setpoint is entered via the keypad, the entered setpoint needs to be recalculated as follows:

Entered Setpoint = Max Value (n024) - Desired Setpoint
This effectively inverts the reference input.
EXAMPLE: Desired Setpoint is 43.0 Hz , Max. Value (n 024) = " 60.0 " Hz.
Therefore, the entered setpoint is:
Entered Setpoint $=60.0 \mathrm{~Hz}-43.0 \mathrm{~Hz}=" 17.0 \mathrm{~Hz}$.
This setpoint should be entered as " 17.0 " Hz.

- If PID feedback loss detection is used, the inverse of the desired feedback loss detection level should be entered in n093.

EXAMPLE: Deseired Feedback Loss Level = 7\%.
Desired Fdbk Loss Det. Level = 100\% - 7\% = " 93 " \% .
E. n085 : Feedback Calibration Gain

Factory setting: 1.00
Range: 0.00 to 10.00

This parameter is used to adjust the Feedback Signal level.

F. Feedback Loss Detection

n092 : Feedback Loss Detection Selection
n093 : Feedback Loss Detection Level
n 094 : Feedback Loss Detection Delay Time

Factory setting: 0
Range: 0 or 1

Factory setting: 0 \%
Range: 0 to 100%

Factory setting: 1.0 seconds
Range: 0.0 to 25.5 seconds

When enabled (n092 = data " 1 "), the drive will sense if the Feedback Signal falls below the n093 level for more than the n094 delay time.

G. PID Settings

n086 : Proportional Gain

Factory setting: 1.0
Range: 0.0 to 10.0

Proportional gain is the value by which the error signal is multiplied to generate the new speed reference.
(continued on next page)

5.22 PID CONTROL Continued

n087 : Integral Time

Factory setting: $\mathbf{1 0 . 0}$ seconds
Range: 0.0 to 100.0 seconds

This parameter determines now fast the integral gain increase is added to the control loop.
n088 : Derivative Time

Factory setting: 0.0 seconds
Range: 0.00 to 1.00 seconds

Derivative time can be adjusted to dampen initial oscillations and reduce overshoot, which serves to improve stability.

These parameters are all interactive, and will need to be adjusted until the control loop is properly tuned, i.e. stable with minimal stead-state error. A general procedure for tuning these parameters is as follows:

1. Adjust Proportional Gain until continuous oscillations in the Controlled Variable are at a minimum.
2. The addition of Integral Time will cause the steady-state error to approach zero. The time should be adjusted so that this minimal error is attained as fast as possible, without making the system oscillate.
3. If necessary, adjust derivative time to reduce overshoot during startup. The drive's accel and decel rate times can also be used for this purpose.
H. n089: Offset
n090 : Integral Value Limit
n091 : Output Lag Filter Time

Factory setting: 0 \%
Range: -109 to 109 \%
Factory setting: 100%
Range: 0 to 109 \%

Factory setting: 0.0 seconds
Range: 0.00 to 1.00 seconds
These parameters are factory set for optimum results for most applications, and generally don't need to be changed. The offset value ($\boldsymbol{n} 089$) provides a bias for the PID value. If the control system oscillates and cannot be dampened by adjusting the Integral Time ($n 087$), decrease the value of $\boldsymbol{n 0 9 0}$ or change the value of $\boldsymbol{n 0 9 1}$.
I. n035 thru n039 : Multi-function Input Terminals

Data 18 : Integral Value Reset
A Multi-function Input Terminal can be used to reset the value of n 087 to data " 0 ". Note that this value is also reset to " 0 " if the drive is given a STOP command.

Data 19 : PID Disable
A Multi-function Input Terminal can be used to disable PID control. When this terminal is closed, PID control is disabled, and the Setpoint Reference is used as the frequency reference.
n001: Parameter Selection / Initialization

Factory setting: 1
Range: 0 to 9

The following table shows which parameters can be programmed (displayed \& changed) or only displayed when $\boldsymbol{n 0 0 1}$ is selected.

Setting	Programmable Parameters	Display Only Parameters
0	n 001	n 002 to n108
1	n 001 to n 034	n 035 to n108
2	n 001 to n 049	n 050 to n108
3	n 001 to n 108	-
$4-7$	Not Used	
8	Initialization: 2 -Wire control	
9	Initialization: 3-Wire control	

By entering either initialization code into n001, a reset to factory configuration (parameter initialization) is accomplished.

$\underline{\text { Parameter }}$		Factory Configuration for	
	Terminal	2-Wire Control	3-Wire Control
n 035	S2	0 = Reverse Run	1 = Stop Command
n036	S3	2 = External Fault (N.O.)	-- = Forward/Reverse Command
n037	S4	$4=$ Fault Reset	2 = External Fault (N.O.)
n038	S5	9 = Multi-step Ref. Select 1	$4=$ Fault Reset
n039	S6	$10=$ Multi-step Ref. Select 2	9 = Multi-step Ref. Select 1

CAUTION

Know your application before using either Initialization function of n001. This parameter must be set to " 0 " to " 3 " for operation.
" 8 " = Factory 2-Wire Control Initialization (Maintained RUN Contact)
" 9 " = Factory 3-Wire Control Initialization (Momentary START/STOP Contact) Entering either Initialization code resets all parameters to factory settings, and automatically returns n001 setting to " 1 ". If the GPD 505 is connected for 3-Wire control and this parameter is set to " 8 " (2-Wire Control Initialization), the motor may run in reverse direction WITHOUT A RUN COMMAND APPLIED. Equipment damage or personal injury may result.

IMPORTANT

After " 8 " or " 9 " has been entered in n 001 , the Motor Rated Current (n 032) MUST BE REPROGRAMMED to the correct setting for the application. See paragraph 5.26.

Factory setting: 0.0 \%
Range: 0.0 to 9.9 \%

This parameter sets the slip compensation gain, in increments of 0.1%. When the gain is 1.0, the output frequency is increased by 1% of the $\boldsymbol{n} 014$ setting at rated current. A setting of 0.0 results in no slip compensation.

Slip Compensation Block Diagram

EXAMPLE:

Desired frequency is 45 Hz Motor slip $=3 \%$ at full load ($n 109$ = 3.0)
Actual output frequency at full load $=46.35 \mathrm{~Hz}$

n 111 : Slip Compensation Primary Delay Time Constant

Factory setting: 2.0 sec .
Range: 0.0 to 25.5 sec .

5.24 STALL PREVENTION

A. n070: Stall Prevention During Deceleration Factory setting: 1

Setting	Function
0	Stall prevention during deceleration disabled
1	Stall prevention during deceleration enabled

Stall prevention during deceleration automatically adjusts the deceleration rate while monitoring the DC bus voltage to prevent overvoltage during deceleration.

When the motor load is large or decel time is short, actual decel time may be longer than the set value because of stall
 prevention.
B. n071: Stall Prevention Level During Acceleration

Factory setting: See Table A3-1
Range: 30-200 \%

This parameter determines the actual GPD 505 output current level during an acceleration condition. Set in percent of GPD 505 rated output current (see Appendix 2).

A setting of " 200 " disables stall prevention during acceleration. During acceleration, if the output current exceeds the value in n071, acceleration stops and frequency is maintained. When the output current goes below the value set in $\boldsymbol{n} 071$, acceleration resumes.

In the constant horsepower region [actual output frequency \geq max. voltage frequency (n014)], the stall prevention level during acceleration is changed by the
 following formula:
$\begin{aligned} & \text { Stall prevention level during } \\ & \text { accel (constant horsepower) }\end{aligned}=$ Stall prevention level during accel $\times \frac{\text { Max. voltage frequency }}{\text { Actual output frequency }}$
C. n072: Stall Prevention Level At Set Speed

Factory setting: See Table A3-1
Range: 30-200 \%

This parameter determines the actual GPD 505 output current level while operating at set speed (frequency). Set in percent of GPD 505 rated output current (see Appendix 2).

A setting of " 200 " disables stall prevention at set speed. During running at set speed, if the output current exceeds the value set in $n 072$, the drive will begin to decelerate. When the output current goes below the value set in $\boldsymbol{n} 072$, acceleration begins, up to the set frequency.

5.25 STOPPING METHOD

n004 : Stopping Method

Factory setting: 0
Range: 0 to 3

Selects the stopping method suitable for the application.

Setting	Description
0	Deceleration (ramp) to stop
1	Coast to stop
2	Coast to stop with timer 1
3	Coast to stop with timer 3

A. Data 0 : Deceleration to Stop

Upon removal of the FWD (REV) Run command, the motor decelerates at the deceleration rate determined by the time set in Decel Time 1 (n020), and DC injection braking is applied immediately before stop. If the decel time is too short or the load inertia is too large, an overvoltage (OV) fault may occur on a stop command - the decel time must be increased.

B. Data 1 : Coast to Stop

Upon removal of the FWD (REV) Run command, the motor coasts to rest.

5.25 STOPPING METHOD Continued

C. Data 2 : Coast to Stop With Timer 1

When programmed for coast to stop with timer 1, a Run command is ignored if issued during the time the motor would normally be decelerating ($\boldsymbol{n} 020$ or $\boldsymbol{n} 022$), or for the minimum base block time (n 053), whichever is longer.

D. Data 3 : Coast to Stop With Timer 2

When programmed for coast to stop with timer 2, a Run command is retained, but is not responded to, until after the time the motor would normally have decelerated to a stop ($n 020$ or n022) , or for the minimum base block time (n 053), whichever is longer.

n032 : Motor Rated Current

Factory setting: See Table A3-1
Range: see description

This parameter should be set, in increments of 0.1 A , to the rated current (FLA) value shown on the motor nameplate; this value MUST BE between 10% and 120% of the drive rated current (refer to Specifications in Appendices $2 \& 3$ of this manual). If the motor FLA does not fall within this range, a different Model No. drive must be used.

NOTE: Setting n 032 to " 0.0 " disables the motor overload protection function, regardless of the setting of n033.
n110: No-load Motor Current

Factory setting: 30%
Range: 0 to 99%

n033 : Electronic Thermal Motor Protection

Factory setting: 1
Range: 0 to 4

Setting	Electronic Thermal Characteristics
0	Electronic thermal overload protection disabled
1	General-purpose motor, standard rating (8 min.)
2	General-purpose motor, short-term rating (5 min.)
3	Blower-cooled motor, standard rating (8 min.)
4	Blower-cooled motor, short-term rating (5 min.)

The GPD 505 protects against motor overload with a UL-recognized, built-in electronic thermal overload relay.

The electronic thermal overload function monitors motor temperature, based on drive output current and time, to protect the motor from overheating. When the electronic thermal overload trips, an " oL1" error occurs, shutting OFF the drive output and preventing excessive overheating of the motor.

When operating with one drive connected to only one motor, an external thermal relay is not needed. When operating several motors with one drive, install a thermal overload relay on each motor.

- General -purpose and blower-cooled motors

Induction motors are classified as general-purpose or blower-cooled motors, based on their cooling capabilities; the motor overload detection function operates differently, as shown, for each of these two motor types.

NOTE: If a TEFC motor is going to be run at or near 100\% of rated current at frequencies below 30 Hz for an extended period of time, select the blower cooled curve (n033 = " 3 ").

Electronic Motor Thermal Protection Characteristics For General-Purpose Motor

Electronic Motor Thermal Protection Characteristics For Blower-Cooled Motor

5.27 TORQUE COMPENSATION

n067 : Torque Compensation Gain (KT)

Factory setting: 1.0
Range: 0.0 to 3.0

Sets the torque compensation, in increments of 0.1 . When the motor has the same capacity as that of the GPD 505, the gain is 1.0. When a smaller motor is used, the gain should be set to 1.5 (typical).

This parameter, in conjunction with n068 (Motor Line-to-Line Resistance) and n069 (Iron Loss), is used by the drive's automatic torque boost function to match the drive's output voltage boost to the motor load. Except for the most demanding of high starting torque applications, the factory settings of these parameters will be adequate. The factory settings are programmed to match the performance characteristics of typical AC motors.

The calculation of compensated torque uses the following formula:

Example of Torque Compensation
Operation

$$
\text { Compensated Value } \approx \frac{(\sqrt{3} \cdot \mathrm{Vac} \cdot \operatorname{lac} \cdot \operatorname{Cos} \Phi)-\mathrm{WI}-\text { Rcable }}{\text { Frequency }} \times \mathrm{K}_{T}
$$

Where
$\mathrm{WI}=n 069$
Rcable = n068
$\mathrm{K}^{T}=n 067$
$\Phi=$ Power Factor (calculated by the GPD 505)

$5.28 \mathrm{~V} / \mathrm{f}$ PATTERN - STANDARD

n010: V/f Pattern

This parameter is factory preset to " $\mathbf{1}$ ". Table $5-4$ describes 14 other preset patterns, one of which may be better suited for your specific application and load characteristics. However, if none of these patterns are suitable, this parameter can be set to " \boldsymbol{F} " (V/f pattern - custom). The exact pattern is then defined by the settings of n012 thru n018, described in paragraph 5.29.

Table 5-4. Standard (Preset) V/f Patterns

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
APPLI- \\
CATION
\end{tabular} \& \multicolumn{2}{|l|}{SPECIFICATION} \& \[
\begin{gathered}
n 010 \\
\text { DATA }
\end{gathered}
\] \& V/f PATTERN (NOTE 3) \& \begin{tabular}{l}
APPLI- \\
CATION SPECIFICATION
\end{tabular} \& \multicolumn{2}{|l|}{SPECIFICATION} \& no10
DATA \& V/f PATTERN (NOTE 3) \\
\hline \multirow[t]{3}{*}{\[
\begin{array}{ll}
G \& P \\
E \& U \\
N \& R \\
E \& P \\
R \& O \\
A \& S \\
L \& E
\end{array}
\]} \& \multicolumn{2}{|r|}{50 Hz} \& 0 \& \& \multirow[t]{2}{*}{\begin{tabular}{ll}
\(H\) \& \(T\) \\
\(I\) \& \(O\) \\
\(G\) \& \(R\) \\
\(H\) \& \(Q\) \\
\& \(U\) \\
\(S\) \& \(E\) \\
\(T\) \& \\
\(A\) \& \\
\(R\) \& \\
\(T\) \& \\
\(I\) \& \\
\(N\) \& \\
\(G\) \&
\end{tabular}} \& 50 Hz \& \begin{tabular}{l}
Starting \\
Torque Low \\
Starting \\
Torque High
\end{tabular} \& 8

9 \&

\hline \& 60 Hz \& | $60 \mathrm{~Hz}$ |
| :--- |
| Saturation $50 \mathrm{~Hz}$ |
| Saturation | \& \[

$$
\begin{gathered}
1 \\
\text { Factory } \\
\text { Setting } \\
\hline \\
2
\end{gathered}
$$

\] \& \& \& 60 Hz \& | Starting |
| :--- |
| Torque Low |
| Starting |
| Torque High | \& A \&

\hline \& \& Hz \& 3 \& \& $$
\begin{array}{ll}
C & O \\
O & P \\
N & E \\
S & R \\
T & A \\
A & T \\
N & I
\end{array}
$$ \& \& Hz \& C \&

\hline $\begin{array}{ll}V & T \\ A & O \\ R & R \\ I & Q \\ A & U \\ B & E\end{array}$ \& 50 Hz \& | Starting |
| :--- |
| Torque |
| Low |
| Starting |
| Torque High | \& 4

5 \& \& H
O
R
S
E
P
O
W \& \& Hz \& d \&

\hline \& 60 Hz \& | Starting |
| :--- |
| Torque |
| Low |
| Starting |
| Torque High | \& 6

7 \& \& \& \& Hz \& E \&

\hline
\end{tabular}

NOTES:

* Consult MagneTek for assistance when these settings are desired (typically used for blowers, centrifugal pumps, and fans).

1. The following conditions must be considered when selecting a V/f pattern:

- Pattern matches the voltage-frequency characteristics of the motor.
- Maximum motor speed.

2. V/f pattern for high starting torque should be selected for:

- Wiring distance.

- Large voltage drop at start.
- AC reactor connected to GPD 505 input or output.
- Use of motor rated below GPD 505 max. output.

3. Patterns shown are for 230 V input; for other input, multiply all (V) values by $\left(\mathrm{V}_{\mathbb{N}} / 230\right)$. i.e., for 460 V input, multiply by $460 / 230=2$.
A. n003: Input Voltage

Factory Setting: $\mathbf{2 3 0 . 0}$ or $\mathbf{4 6 0 . 0} \mathrm{V}$
Range: 150.0 to 255.0 V (230V) 150.0 to 510.0 V (460V)

This parameter should be set to match the rated (nominal) input voltage.
B. no12: Frequency - Max. (Fmax)
n013: Voltage - Max. (Vmax)
n014: Frequency - Max. Voltage point (FA)
n015: Frequency - Midpoint (FB)
n016: Voltage - Midpoint (Vc)
n017: Frequency - Min. (Fmin)
n018: Voltage - Min. (Vmin)

Initial Voltage Values *	
When $0010=1$	When n010 $=\mathrm{F}$
230.0 V	200.0 V
17.2 V	15.0 V
11.5 V	10.0 V

* Double indicated values for 460 V units

These seven parameters define the custom V/f pattern, only if n010 is set to "F". The illustration below shows how these constants relate to each other in establishing the custom V/f pattern.

V/f Characteristics Set by n012 thru n018

$5.29 \mathrm{~V} / \mathrm{f}$ PATTERN - CUSTOM Continued

NOTE: To establish a V/f pattern with a straight line from Fmin to FA, set $\mathrm{FB}=\mathrm{Fmin}$. The setting of Vc is then disregarded and does not affect the V/f pattern.

IMPORTANT

The parameter settings are checked whenever power is applied to the GPD 505, or each time the ENTER key is pressed while in the Program (PRGM) mode. A parameter set value failure (oPE5) will occur if any part of the following relationships among n012 thru n018 is not TRUE:
(a) $F \max \geq \mathrm{FA}_{\mathrm{A}} \geq \mathrm{FB} \geq \mathrm{Fmin}$
(b) $V \max \geq \mathrm{Vc} \geq \mathrm{Vmin}$
C. n011: Motor Rated Voltage

Factory setting: $\mathbf{2 3 0 . 0}$ or $\mathbf{4 6 0 . 0} \mathrm{V}$
Range: 150.0 to 255.0 V (230V)
150.0 to 510.0 V (460V)

This parameter should be set to match the motor rated (nameplate) voltage.

5.30 INPUT PHASE LOSS DETECTION

n 080 : Input Phase Loss Detection Level
n 081 : Input Phase Loss Detection Delay Time

Factory setting: 7%
Range: 1 to 100%

Factory setting: 8 (= 10.24 s$)$
Range: 2 to 255 (x 1.28 s)

The input phase loss detection circuit monitors the DC bus current ripple and activates when one of the input phases is lost. The detection circuit calculates the maximum and minimum values of the DC bus voltage in 1.28 second intervals, and compares the difference ($\Delta \mathrm{V}$) between these values with the input phase loss detection level ($\boldsymbol{n} 080$). If $\Delta V \geq n 080$, then an input phase loss is detected, and after the input phase loss detection delay time ($n 081$), an SPI fault occurs and the motor coasts to stop.

Input phase loss detection is disabled in the following cases:

- Parameter n080 is set to data " 100 ".
- A Stop command is input.
- Magnetic Contactor (MC) shuts OFF.
- CPU A/D converter fault (CPF5).
- During acceleration.
- Output current \leq drive rated current.

5.31 OUTPUT PHASE LOSS DETECTION

n 082 : Output Phase Loss Detection Level
n083 : Output Phase Loss Detection Delay Time

Factory setting: 0%
Range: 0 to 100%
Factory setting: $\mathbf{0 . 2}$ seconds
Range: 0.0 to 2.0 seconds

Factory setting: 0 \%
Range: 0 to 100 \%
Factory setting: 0.2 seconds
Range: 0.0 to 2.0 seconds

The output phase loss detection circuit monitors the DCCT's and activates when one of the output phases is lost. The detection circuit calculates the RMS current value (lims), and compares it with the output phase loss detection level ($\boldsymbol{n} \mathbf{0 8 2}$). If $\mathrm{I}_{\mathrm{RMS}} \geq \boldsymbol{n} 082$, then an output phase loss is detected, and after the output phase loss detection delay time ($n 083$), an SPO fault occurs and the motor coasts to stop.

Output phase loss detection is disabled in the following cases:

- Parameter n082 is set to data " 0 ".
- Parameter n083 is set to data " 0.0 ".

Section 6. FAULT INDICATION AND DETAILS

6.1 GENERAL

A failure in the GPD 505 can fall into one of two categories, Alarm or Fault.
A blinking "Alarm" indication is a warning that a GPD 505 trouble condition will soon occur, or that a problem exists in the external circuitry. The GPD 505 will continue to operate during an "Alarm" indication. "Alarm" indications are not entered into the fault register.

A steady "Fault" indication is displayed when the GPD 505's Fault relay has tripped (GPD 505 shutdown). The motor coasts to a stop, and a fault signal output is present at control circuit terminals MA, MB, \& MC, if parameter n040 is programmed for fault output (data " 0 ").

Table 6-1. Alarm Indication and Details

indication (DISPLAY)	PROBLEM	DESCRIPTION
$\begin{gathered} \boldsymbol{b b} \\ \text { (blinking) } \end{gathered}$	External Base Block command	Base Block command at multi-function terminal is active, shutting off GPD 505 output (motor coasting). Temporary condition, cleared when input command is removed.
CALL (blinking)	Communication ready	Drive is waiting for the PLC to establish communication (only when n002 is set to " 4 "thru " 8 ").
$\underset{\text { (blinking) }}{\text { CE }}$	Modbus transmission fault	Control data cannot be received normally - condition has lasted longer than 2 seconds.
$\underset{\text { (blinking) }}{E F}$	Simultaneous forward and reverse operation commands	Fwd Run and Rev Run commands are both closed for more than 0.5 sec . Removing one of the commands will allow drive operation.
$\begin{gathered} \hline \text { oH1 } \\ \text { (blinking) } \end{gathered}$	Heat sink overheated	Fin temperature exceeds $90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$; drive is programmed for operation to continue.
$\begin{gathered} \text { oH3 } \\ \text { (blinking) } \end{gathered}$	External overheat	External temperature monitoring circuit(s) detected an overtemperature condition and produced an input signal. See paragraph 5.19, Data 21.
$\begin{gathered} \text { OL3 } \\ \text { (blinking) } \end{gathered}$	Overload	GPD 505 output torque exceeds the set Overtorque Detection level ($\mathbf{n} 075$); GPD 505 is programmed to continue operation at overtorque.
OPE1 (1)	kVA parameter setting fault	kVA setting (n115) is incorrect.
OPE3 (1)	Parameter set value fault	n035 to n039 (multi-function input) set value fault. See paragraph 2.14 for description.
oPE5 (1)	Parameter set value fault	n012 to n018 (V/f data) set incorrectly.
oPE6 (1)	Parameter set value fault	One of the following conditions was detected: - n058 > n059 - n030 < n031
$\begin{gathered} \text { ou } \\ \text { (blinking) } \end{gathered}$	Overvoltage	Internal monitor of DC Bus voltage indicates that input AC power is excessively high, while GPD 505 is in stopped condition.
$\underset{\text { (blinking) }}{\text { Uu }}$	Low voltage (Power UV)	Internal monitor of DC Bus voltage indicates that input AC power is below Undervoltage detection level, while the GPD 505 is stopped.

NOTES:

(1) These displays occur only when in the Program mode, when exiting from Program mode, or when applying power to the GPD 505.

Table 6-2. Fault Indication and Details

INDICATION (DISPLAY)	FAULT	DESCRIPTION
CE	Modbus transmission error	Control data cannot be received normally - condition has lasted longer than 2 seconds.
CPFO (1)	Transmission error or control function hardware fault (including internal RAM, external RAM or PROM)	Transmission between GPD 505 and remote operator is not established within 5 seconds after the power supply is turned on. (Displayed on the remote operator.)
CPF1 (1)	Transmission error	Transmission error occurs 2 seconds or more after transmission has first been established.
CPF4 (1)	EPROM fault	GPD 505 failure.
CPF5 (1)	A/D converter failure in CPU	GPD 505 failure.
EFO	External fault - serial communication	Fault condition occurred in the external communication circuit(s).
$E F_{-}$	Ext. fault signal at term. S_ ("_" represents a digit 2-6)	A fault condition has occurred in the external circuit(s) monitored by the contact providing input to the indicated terminal.
Err	Parameter write-in fault	Temporary display, in Program mode, indicating that parameter setting was not written into EPROM memory.
GF	Ground fault protection	Ground current exceeded approx. 50\% of the GPD 505 rated current.
oC (2)	Overcurrent	GPD 505 output current exceeds 200\% (for GPD505VA107 thru -A068, and -B008 thru -B034), or 180\% for all other ratings, of GPD 505 rated current.
OH1	Heat sink overheated	Fin temperature exceeds $95^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$
oH2	Heat sink overheated	Fin temperature exceeds $105^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$
oL1	Motor overload	Thermal motor overload protection has tripped.
OL2 (2)	Drive overload	GPD 505 overload protection has tripped.
oL3	Overtorque	GPD 505 output torque exceeds the set Overtorque Detection level ($\mathbf{n} 075$), and GPD 505 is programmed for coast to stop at overtorque detection.
oPR	Operator disconnect	Digital Operator has been disconnected. Check $\boldsymbol{n 1 1 2}$
OU	Overvoltage (OV)	Detection level: Approx. 400V for 230V GPD 505; Approx. 800V for 460V GPD 505. Reset level: 385 V .
PUF	Fuse blown	DC Bus fuse has cleared. Check for short circuit in output, and check main circuit transistors.
$r r$	Regenerative transistor failure	Dynamic Braking resistor has failed.
$r \mathrm{H}$	Braking resistor unit overheated	Dynamic Braking resistor has overheated.

Table 6-2. Fault Indication and Details - Continued

INDICATION (DISPLAY)	FAULT	DESCRIPTION
SC	Load short-circuit	Drive output has been short-circuited.
SP i	Input open-circuit	Drive input has an open-circuit in one or more phase.
SPo	Output open-circuit	Drive output has an open-circuit in one or more phase.
Uu1	Low voltage (Power UV)	Occurs two seconds after detection of low voltage. Detection level: 230 V GPD $505=190$ VDC or less; 460 V GPD $505=380$ VDC or less.
Uu2	Low voltage (Control UV)	Control circuit voltage levels below acceptable levels during operation.
Uu3	Low voltage (MC fault)	Main circuit (precharge) magnetic contactor not operating correctly.

NOTES:
(1) These are all Control PCB hardware faults - see Troubleshooting Chart 7.9.
(2) Note that circumstances leading to these faults stress the drive's output devices - do not simply reset the fault without following procedure in Troubleshooting Chart 7.5 or 7.6.

6.2 DISPLAYING FAULT SEQUENCE

Whenever the Fault relay trips and shuts down the GPD 505, the display code of the fault that caused the trip (except for Illegal Constant [oPE _] or Control Function Error [$C P F_{-}$]) is entered into a register in NV-RAM memory. This register retains, in sequence, that fault code and those of up to three immediately preceding the shutdown failures.

A newly occurring fault code will not change the fault register if it is a recurrence of the most recently entered fault (i.e. no. 1 position in the memory register).

The contents of this register can be displayed by following the steps in Table 6-3.

STEP	OPERATION PROCEDURE	DIGITAL OPERATOR DISPLAY	FUNCTION LEDs DISPLAY
1	Before a RESET command is entered, the fault that caused Fault trip (shutdown) is displayed.		Last LED that was "ON" remains "ON"
2	Press DSPL until the Montr Function LED is on.	1)-51	After last keypress, \square Montr is "ON"
3	Press until " U-09 " appears on the display.	1 ± 5	Montr still "ON"
4	Press enter .	II	
5	Press \square The display indicates that this is currently the first code in the memory register.	$1 \text { II }$	
6	Continue pressing \square to display the other codes in the memory register. After the last register code is displayed, the sequence will return to the first code.	$\begin{array}{ll} \square & \text { II II } \\ \square & \text { II } \\ & \text { II } \\ \hline \end{array}$	

After the fault sequence has been examined, troubleshoot the most recent fault before entering a Fault Reset command (by Digital Operator STOP/RESET key or external signal at term. S4) to prepare the GPD 505 for restart of operation.

Section 7. TROUBLESHOOTING

If the GPD 505 malfunctions, locate the cause and take corrective action by following the flowcharts given in this section.

A. TROUBLESHOOTING MOTOR SYMPTOMS

Motor Will Not Run. Chart 7.1
Motor Stalls During Acceleration Chart 7.2
B. TROUBLESHOOTING FOR FAULT CONDITIONS
Overvoltage (ou) Chart 7.3
Blown Fuse (PUF) Chart 7.4
Overcurrent (oC) Chart 7.5
Overload (oL) Chart 7.6
Undervoltage (Uu) Chart 7.7
Overheat (oH) Chart 7.8
Control Function Error (CPF_) Chart 7.9
Fault Signal Input (EF_) Chart 7.10

WARNING

Oscilloscope chassis may be at voltages potentially hazardous to life if not properly grounded. If oscilloscope is used to measure high voltage waveforms, use only a dual channel oscilloscope in the differential mode with X100 probes. Always connect oscilloscope chassis to earth ground.

WARNING

Voltages dangerous to life exist when equipment is open and energized. Do not work alone.

CAUTION
To prevent equipment damage always remove incoming three-phase power before test equipment is connected or removed.

CAUTION

If the GPD 505 Control PCB is replaced, ALL GPD 505 CONSTANTS MUST BE REPROGRAMMED for your application.

MOTOR WILL NOT RUN

TROUBLESHOOTING CHART 7.2
MOTOR STALLS DURING ACCELERATION

TROUBLESHOOTING CHART 7.3
OVERVOLTAGE (ou) FAULT INDICATION

TROUBLESHOOTING CHART 7.4

BLOWN FUSE (PUF) FAULT INDICATION

CAUTION

Do not replace DC Bus fuse without first checking output transistors.

OVERCURRENT (oC) FAULT INDICATION

OVERLOAD (oL) FAULT INDICATION

TROUBLESHOOTING CHART 7.7

UNDERVOLTAGE (Uu) FAULT INDICATION

OVERHEAT (oH) FAULT INDICATION

CONTROL FUNCTION ERROR (CPF_) FAULT INDICATION

TROUBLESHOOTING CHART 7.10

EXTERNAL FAULT ($E F_{-}$) INDICATION

*

Appendix 1. LISTING OF PARAMETERS

The GPD 505 control circuits use various parameters to select functions and characteristics of the GPD 505. Changing of parameter settings must be done in the Program mode, or by use of the Function LEDs, if available (see Section 4).

The following table lists all parameters in numerical order. For each parameter, reference paragraph(s) in Section 5 are listed (if applicable) where the features of the GPD 505 affected by that parameter are described.

Table A1-1. GPD 505 Parameters ($n X X X$)

PARAMETER NUMBER	FUNCTION NAME	DESCRIPTION	INCREMENT	SETTING RANGE	FACTORY SETTING	USER SETTING	PARA. REF.
n001	Parameter Selection / Initialization	0 : n001 can be read and set; n002 -n118 read only 1:n001-n034 read and set; n035-n118 read only 2: n001-n049 read and set; n050 -n118 read only 3 : n001 -n118 read and set 4, 5, 6, 7 : Not Used 8: 2-Wire initialization 9:3-Wire initialization	1	0-9	1		5.23
n002	Operation Mode Selection	Setting $\frac{\text { Sequence }}{}$ 0 Reference 1 Ext. Term. Dig. Oper. 2 Dig. Oper. Ext. Term. 3 Ext. Term. Ext. Term. 4 Dig. Oper. Ser. Comm. 5 Ext. Term. Ser. Comm. 6 Ser. Comm. Ser. Comm. 7 Ser. Comm. Dig. Oper. 8 Ser. Comm. Ext. Term.	1	0-8	3		5.26A, 5.16B, 5.22B
n003	Input Voltage	Nominal value of input power applied to drive	0.1 (V)	$\begin{array}{\|c\|} \begin{array}{c} 150.0 \text { to } 255.0 \\ \text { (230V drive) } \end{array} \\ \hline 150.0 \text { to } 510.0 \\ \text { (460V drive) } \end{array}$	$\begin{aligned} & 230.0 \\ & \hline 460.0 \end{aligned}$		5.29A
n004	Stop Method	0 : Ramp to stop 1 : Coast to stop 2 : Coast to stop with timer 1 3 : Coast to stop with timer 2	1	0-3	0		5.25
n005	Phase Rotation	$0 \text { : CCW }$ 1 : CW (or opposite direction)	1	0 or 1	0		
n006	Reverse Prohibit	0 : Reverse Run enabled 1 : Reverse Run disabled	1	0 or 1	0		
n007	LOCAL/ REMOTE Key Function	0 : Disabled 1 : Enabled	1	0 or 1	1		

Table A1-1. GPD 505 Parameters ($n X X X$) - Continued

PARAMETER NUMBER	FUNCTION NAME	DESCRIPTION	INCREMENT	SETTING RANGE	FACTORY SETTING	USER SETTING	PARA. REF.
n008	STOP Key Function	0 : STOP key is effective only when sequence command (per n002) is to be from Digital Operator 1 : STOP key is effective regardless of programming of n002	1	0 or 1	1		
n009	Frequency Reference Setting Method From Digital Operator	0 : ENTER key does not have to be pressed to write-in new value 1 : ENTER key must be pressed to write-in new value	1	0 or 1	1		
$\begin{gathered} \hline \hline n 010 \\ \hline \mathbf{V} / \mathbf{F} \end{gathered}$	V/f Pattern Selection See Note 5	0 to E : One of 15 preset V / f patterns F: Custom V/f pattern	1	$0-\mathrm{F}$	1		5.28
$\begin{aligned} & \text { n011 } \\ & \hline \text { Vmtr } \end{aligned}$	Motor Rated Voltage See Note 5	Voltage indicated on motor nameplate	0.1 (V)	$\begin{array}{\|c} \begin{array}{c} 150.0 \text { to } 255.0 \\ \text { (230V drive) } \end{array} \\ \hline \begin{array}{c} 150.0 \text { to } 510.0 \\ \text { (460V drive) } \end{array} \\ \hline \end{array}$	$\begin{array}{r} 230.0 \\ \hline 460.0 \end{array}$		5.29C
n012	Frequency Max.	Maximum level for drive output frequency	0.1 (Hz)	50.0 to 400.0	60.0 See Note 1		5.29B
n013	Voltage - Max.	Maximum level of drive output voltage	0.1 (V)	0.1 to 255.0 (230V drive) 0.1 to 510.0 (460V drive)	230 460.0 See Note 1		5.29B
n014	Frequency Max. Voltage Point	Level of frequency at which drive output voltage will reach n013 value	0.1 (Hz)	0.2 to 400.0	60.0 See Note 1		5.29B
n015	Frequency Midpoint	Level of frequency at which drive output voltage will reach n016 value	0.1 (Hz)	0.1 to 399.9	3.0 See Note 1		5.29B
n016	Voltage Midpoint	Level of drive output voltage when output frequency is at n015 value	0.1 (V)	0.1 to 255.0 (230V drive)0.1 to 510.0 (460 V drive)	17.2 See Note 1		5.29B
n017	Frequency Min.	Lowest level of output frequency drive will produce	0.1 (Hz)	0.1 to 10.0	1.5 See Note 1		5.29B
n018	Voltage - Min.	Level of drive output voltage output frequency is at $\boldsymbol{n 0 1 7}$ value	0.1 (V)	0.1 to 50.0	11.5 See Note 1		5.29B
n019 Accel	Acceleration Time 1 See Note 5	Time for drive output to ramp from Fmin. to Fmax.	$\begin{array}{\|c\|} \hline 0.1(\mathrm{sec}) \\ (\leq 999.9) \\ \hline 1(\mathrm{sec}) \\ (\geq 1000) \\ \hline \end{array}$	0.0 to 3600	10.0		5.2
n020	Deceleration Time 1 See Note 5	Time for drive output to ramp from Fmax. to Fmin.	$\begin{array}{\|c\|} \hline 0.1(\mathrm{sec}) \\ (\leq 999.9) \\ \hline 1(\mathrm{sec}) \\ (\geq 1000) \\ \hline \end{array}$	0.0 to 3600	10.0		5.2

Table A1-1. GPD 505 Parameters ($n X X X$) - Continued

PARAMETER NUMBER	FUNCTION NAME	DESCRIPTION	INCREMENT	SETTING RANGE	FACTORY SETTING	USER SETTING	PARA. REF.
n021	Acceleration Time 2	Alternate time for drive output to ramp from Fmin. to Fmax.	$\begin{array}{\|c} 0.1(\mathrm{sec}) \\ (\leq 999.9) \\ \hline 1(\mathrm{sec}) \\ (\geq 1000) \end{array}$	0.0 to 3600	10.0		5.2
n022	Deceleration Time 2	Alternate time for drive output to ramp from Fmax. to Fmin.	$\begin{array}{\|c} \hline 0.1(\mathrm{sec}) \\ (\leq 999.9) \\ \hline 1(\mathrm{sec}) \\ (\geq 1000) \end{array}$	0.0 to 3600	10.0		5.2
n023	S-curve Selection	Setting 0 S-curve time 1 0.2 sec 2 0.5 sec 3 1.0 sec	1	0-3	1		5.3
n024	Digital Operator Display Mode	Setting Display units 0.1 Hz 1 0.1% $2-39$ rpm $40-3999$ custom	1	0-3999	0		5.8
$$	Frequency Reference 1 See Note 5	Frequency set by Digital Operator (or value retained by Up/Down or Sample/Hold function)	0.1 (Hz)	0 to 400.0 See Note 4	0.0		5.19B
n026	Frequency Reference 2	Additional frequency setpoint for multi-step speed	0.1 (Hz)	0 to 400.0 See Note 4	0.0		5.19B
n027	Frequency Reference 3	Additional frequency setpoint for multi-step speed	0.1 (Hz)	0 to 400.0 See Note 4	0.0		5.19B
n028	Frequency Reference 4	Additional frequency setpoint for multi-step speed	0.1 (Hz)	$0 \text { to } 400.0$ See Note 4	0.0		5.19B
n029	Jog Reference	Operating frequency when a Jog command is input	0.1 (Hz)	$0 \text { to } 400.0$ See Note 4	6.0		$\begin{gathered} 5.15 \\ 5.19 B \end{gathered}$
n030	Frequency Reference Upper Limit		1 (\%)	0 to 109	100		5.12
n031	Frequency Reference Lower Limit		1 (\%)	0 to 100	0		5.12
$\begin{array}{c\|} \hline \hline \text { n032 } \\ \hline \text { FLA } \\ \hline \end{array}$	Motor Rated Current See Note 5	FLA rating of motor	0.1 (A)	See Note 2	See Note 3		5.26
n033	Electronic Thermal Overload Protection (for OL1 fault)	Setting Characteristics 0 No protection 1 Standard motor (8 min.) 2 Standard motor (5 min.) 3 Blower-cooled motor $(8$ min. $)$ 4 Blower-cooled motor 5 min.)	1	0-4	1		5.26

Table A1-1. GPD 505 Parameters ($n X X X$) - Continued

PARAMETER NUMBER	FUNCTION NAME	DESCRIPTION	INCREMENT	SETTING RANGE	FACTORY SETTING	USER SETTING	PARA. REF.
n034	Overheat Stop Method (for OH 1 fault)		1	0-3	3		
n035	Multi-function Input Selection (Terminal S2)	0 : Reverse run (2-Wire sequence) [can only be set in n035] 1 : Fwd / Rev command (3-Wire sequence) [can only be set in n035] 2 : External fault (N.O.) 3 : External fault (N.C.) 4 : Fault reset 5 : Remote / Local selection 6 : Serial communication/Dig. Op. (Freq. Ref. \& Run command) 7 : Stop command using Decel. Time 2 (Fast stop) 8 : Auto freq. ref. selection (FV - open: FI - closed) 9 : Multi-step speed ref. command 1 10 : Multi-step speed ref. command 2 11 : Jog command 12 : Accel/Decel time change command 13 : External base block (N.O.) 14 : External base block (N.C.) 15 : Speed search from maximum frequency 16 : Speed search from set frequency 17 : Parameter change enable 18 : I value reset (PID) 19 : PID control off 20 : Timer function 21 : OH3 (pre-alarm input) 22 : Analog reference Sample/Hold command 23 : Inertia ridethrough command (N.O.) 24 : Inertia ridethrough command (N.C.) 25 : Up / Down command [can only be set in n039] 26 : Loop test (Modbus) [can only be set in n039] 27 : PID changeover [can only be set in n039]	1	0-24	$\begin{gathered} 0 \\ (1) \text { * } \end{gathered}$		5.19
n036	Multi-function Input Selection (Terminal S3) [When n035 has been set to " 1 ", this parameter will display " - - ", and no value can be entered]		1	2-24	$\stackrel{2}{(--)^{*}}$		5.19
n037	Multi-function Input Selection (Terminal S4)		1	2-24	$\begin{gathered} 4 \\ (2) \end{gathered}$		5.19
n038	Multi-function Input Selection (Terminal S5) [When n039 has been set to " 25 ", this parameter will display " - - ", and no value can be entered]		1	2-24	$\begin{gathered} 9 \\ (4) \end{gathered}$		5.19
n039	Multi-function Input Selection (Terminal S6)		1	2-27	$\begin{gathered} 10 \\ (9) \end{gathered}$		5.19

Table A1-1. GPD 505 Parameters ($n X X X$) - Continued

PARAMETER NUMBER	FUNCTION NAME	DESCRIPTION	INCREMENT	SETTING RANGE	FACTORY SETTING	USER SETTING	PARA. REF.
n040	Multi-function Output (Terminals MA-MB-MC)	0 : Fault 1 : During running 2 : Speed agree 3 : Desired speed agree 4 : Frequency detection 1 5 : Frequency detection 2 6 : Overtorque detection (N.C.) 7 : Overtorque detection (N.O.) 8 : During base block 9 : Operation mode 10 : Ready 11 : Timer function 12 : During auto restart 13 : OL pre-alarm (80% of OL1 or OL2) 14 : Frequency reference loss 15 : Closed by serial comm. 16 : PID feedback loss 17: OH1 alarm (functions only if n034 has been set to " 3 ")	1	0-17	0		5.20
n041	Multi-function Output (Terminals M1-M2)		1	0-17	1		5.20
n042	Auto Analog Input Selection	$0: 0-10 \mathrm{~V}$ input - Terminal FV 1: 4-20mA input - Terminal FI	1	0 or 1	0		$\begin{gathered} \text { 5.11, } \\ 5.22 B \end{gathered}$
n043	Manual Analog Input Selection (Terminal FI)	$0: 0-10 \mathrm{~V}$ input (jumper J1 on Control PCB must be cut) 1:4-20mA input	1	0 or 1	1		$\begin{gathered} \text { 5.11, } \\ 5.22 B \end{gathered}$
n044	Frequency Reference Retention (for Up/Down, Sample/Hold functions)	0 : Not retained 1 : Retained in Frequency Reference 1 (n025)	1	0 or 1	0		5.14
n045	Frequency Reference Loss Detection	0 : No detection 1 : Continue to run at 80% of Fmax.	1	0 or 1	0		5.13
$\begin{aligned} & \hline \hline \text { n046 } \\ & \hline \text { Fgain } \\ & \hline \end{aligned}$	Frequency Reference Gain See Note 5		1 (\%)	0 to 200	100		5.10
$$	Frequency Reference Bias		1 (\%)	-100 to 100	0		5.10
n048	Multi-function Analog Output (Terminals AM\& AC)	Setting 0 1 Monitor 1 Output frequency (Hz) 2 3 Output power (A) 3 DC bus voltage (VDC)	1	0-3	0		5.18

Table A1-1. GPD 505 Parameters ($n X X X$) - Continued

PARAMETER NUMBER	FUNCTION NAME	DESCRIPTION	INCREMENT	SETTING RANGE	FACTORY SETTING	USER SETTING	PARA. REF.
n049	Analog Monitor Gain		0.01	0.01 to 2.00	1.00		5.18
n050	Carrier Frequency	$\begin{aligned} & 1 \text { to } 6:(x 2.5 \mathrm{kHz}) \\ & 7 \text { to } 9: \text { (synchronous) } \end{aligned}$	1	1-9	See Note 3		5.5
n051	Momentary Power Loss Ride-through Method	Setting Method 0 Not provided 1 Continuous operation after power recovery within 2 sec. 2 Continuous operation after power recovery within control logic time (no fault output)	1	0-2	0		5.17
n052	Speed Search Operation Level		1 (\%)	0 to 200	110		5.19E
n053	Minimum Base Block Time		0.1 (sec)	0.5 to 5.0	See Note 3		5.19E
n054	V/f Reduction Level During Speed Search		1 (\%)	0 to 100	See Note 3		5.19E
n055	Momentary Power Loss Ride-through Time		0.1 (sec)	0.0 to 2.0	See Note 3		5.17
n056	Number of Automatic Restart Attempts		1	0 to 10	0		5.4
n057	Fault Contact Selection at Automatic Restart	0 : Closed during auto restart 1 : Open during auto restart	1	0 or 1	0		5.4
n058	Prohibit Frequency 1		0.1 (Hz)	0.0 to 400.0	0.0		5.6
n059	Prohibit Frequency 2		0.1 (Hz)	0.0 to 400.0	0.0		5.6
n060	Prohibit Frequency Deadband		0.1 (Hz)	0.0 to 25.5	1.0		5.6
n061	Elapsed Timer Selection	0 : Accumulated time during power on 1 : Accumulated time during running	1	0 or 1	1		
n062	Elapsed Timer 1	Reserved for automatic record of drive operating time. Not user programmable.	1 (hour)	0 to 9999	0	N/A	4.4

Table A1-1. GPD 505 Parameters ($n X X X$) - Continued

PARAMETER NUMBER	FUNCTION NAME	DESCRIPTION	INCREMENT	SETTING RANGE	FACTORY SETTING	USER SETTING	PARA. REF.
n063	Elapsed Timer 2	Reserved for automatic record of drive operating time. Not user programmable.	$\begin{gathered} 1 \\ (\times 10,000 \\ \text { hours) } \end{gathered}$	0 to 27	0	N/A	4.4
n064	DC Injection Current		1 (\%)	$\left\lvert\, \begin{gathered} 0 \text { to } 100 \\ {[100 \%=\text { drive }} \\ \text { rated current }] \end{gathered}\right.$	50		5.7
n065	DC Injection Time at Stop		0.1 (sec)	0.0 to 10.0	0.0		5.7
n066	DC Injection Time at Start		0.1 (sec)	0.0 to 10.0	0.0		5.7
n067	Torque Compensation Gain		0.1	0.0 to 3.0	1.0		5.27
n068	Motor Line- to-Line Resistance		$\begin{array}{\|c\|} \hline 0.001(\Omega) \\ (\leq 9.999) \\ \hline 0.01(\Omega) \\ (\geq 10.00) \\ \hline \end{array}$	0.000 to 65.65	See Note 3		5.27
n069	Iron Loss		1 (W)	0 to 9999	See Note 3		5.27
n070	Stall Prevention During Deceleration	0 : Disabled 1 : Enabled	1	0 or 1	1		5.24
n071	Stall Prevention Level During Acceleration	[When level is set to 200%, stall prevention during deceleration is disabled]	1 (\%)	30 to 200	See Note 3		5.24
n072	Stall Prevention Level at Set Frequency	[When level is set to 200%, stall prevention during running is disabled]	1 (\%)	30 to 200	See Note 3		5.24
n073	Speed Coincidence Frequency		0.1 (Hz)	0.0 to 400.0	0.0		5.20
n074	Overtorque Detection (OL3)	$\frac{\text { Setting }}{0}$ 1 Method Detection disabled Detect only at set frequency; operation 2 continues Detect during all frequency conditions; 3 operation continues Detect only at set 4 frequency; coast to stop Detect during all frequency conditions; coast to a stop	1	0-4	0		5.21

Table A1-1. GPD 505 Parameters ($n X X X$) - Continued

PARAMETER NUMBER	FUNCTION NAME	DESCRIPTION	INCREMENT	SETTING RANGE	FACTORY SETTING	USER SETting	PARA. REF.
n075	Overtorque Detection Level (OL3)		1 (\%)	$\begin{gathered} 30 \text { to } 200 \\ \text { [} 100 \%=\text { drive } \\ \text { rated current] } \end{gathered}$	160		5.21
n076	Overtorque Detection Delay Time (OL3)		0.1 (sec)	0.0 to 10.0	0.1		5.21
n077	On-delay Timer		0.1 (sec)	0.0 to 25.5	0.0		5.19F
n078	Off-delay Timer		0.1 (sec)	0.0 to 25.5	0.0		5.19F
n079	DB Resistor Overheat Function (rH)	0 : No DB protection calculated or provided 1 : Protection provided for installed MagneTek option DB resistor	1	0 or 1	0		
n080	Input Phase Loss Detection Level (SPI)	[When set to 100%, input phase loss detection is disabled]	1 (\%)	1 to 100	7		5.30
n081	Input Phase Loss Det. Delay Time (SPI)		$\left(\begin{array}{c} 1 \\ (x 1.28 \mathrm{sec}) \end{array}\right.$	2 to 255	$\begin{gathered} 8 \\ (=10.24 \mathrm{~s}) \end{gathered}$		5.30
n082	Output Phase Loss Detection Level (SPO)		1 (\%)	0 to 100	0		5.31
n083	Output Phase Loss Detection Time (SPO)		0.1 (sec)	0.0 to 2.0	0.2		5.31
$$	PID Selection See Note 5	0 : PID disabled 1 : PID enabled 2 : PI with Feed Forward 3 : Inverted PID	1	0-3	0		5.22A
n085	Feedback Calibration Gain (PID)		0.01	0.00 to 10.00	1.00		5.22E
n086	Proportional Gain (PID)		0.1	0.0 to 10.0	1.0		5.22G
n087	Integral Gain (PID)		0.1 (sec)	0.0 to 100.0	10.0		5.22G
n088	Derivative Time (PID)		0.01 (sec)	0.00 to 1.00	0.00		5.22G
n089	Offset (PID)		1 (\%)	-109 to 109	0		5.22H
n090	Limit of Integral Value (PID)		1 (\%)	0 to 109	100		5.22H
n091	Output Lag Filter Time (PID)		0.1 (sec)	0.0 to 2.5	0.0		5.22H

Table A1-1. GPD 505 Parameters ($n X X X$) - Continued

PARAMETER NUMBER	FUNCTION NAME	DESCRIPTION	INCREMENT	SETTING RANGE	FACTORY SETTING	USER SETTING	PARA. REF.
n092	Feedback Loss Detection (PID)	0 : Detection is disabled. 1 : Detection is enabled.	1	0 or 1	0		5.22F
n093	Feedback Loss Det. Level (PID)		1 (\%)	0 to 100	0		5.22F
n094	Feedback Loss Det. Delay Time (PID)		0.1 (sec)	0.0 to 25.5	1.0		5.22F
n095 kWsav	Energy Saving Selection See Note 5	0 : Energy saving is disabled. 1 : Energy saving is enabled.	1	0 or 1	0		5.9
n096	Energy Saving Gain K2		$\begin{gathered} 0.01 \\ (\leq 99.99) \\ \hline 0.1 \\ (\geq 100.0) \end{gathered}$	0.00 to 655.0	See Note 3		5.9
n097	Energy Saving Voltage Lower Limit at 60 Hz		1 (\%)	0 to 120	50		5.9
n098	Energy Saving Voltage Lower Limit at 6 Hz		1 (\%)	0 to 25	12		5.9
n099	Time of Average kW (Energy Saving)		$\begin{gathered} 1 \\ (\times 25 \mathrm{~ms}) \end{gathered}$	1 to 200	$\begin{gathered} 1 \\ (=25 \mathrm{~ms}) \end{gathered}$		5.9
n100	Voltage Limit of Tuning (Energy Saving)		1 (\%)	0 to 100	0		5.9
n101	Step Voltage of Tuning to 100\% Output Voltage (Energy Saving)		0.1 (\%)	0.0 to 10.0	0.5		5.9
n102	Step Voltage of Tuning to 5\% Output Voltage (Energy Saving)		0.1 (\%)	0.0 to 10.0	0.2		5.9
n103	Modbus Time Out Detection	0 : Time out detection is disabled. 1 : Time out detection is enabled	1	0 or 1	1		5.16

Table A1-1. GPD 505 Parameters ($n X X X$) - Continued

PARAMETER NUMBER	FUNCTION NAME	description		increment	setting RANGE	FACTORY SETTING	USER SETTING	PARA. REF.
n104	Stop Method on Modbus Communication Error (CE)	Setting 0 1 2 3	Stop method Ramp to stop - Decel 1 (fault) Coast to stop (fault) Ramp to stop - Decel 2 (fault) Continue operation (alarm)	1	0-3	1		5.16
n105	Modbus Frequency Reference Unit	Setting 0 1 2 3	$\begin{aligned} & \hline \text { Frequency unit } \\ & \hline 0.1 \mathrm{Hz/1} \\ & 0.01 \mathrm{~Hz} / 1 \\ & 100 \% / 30000 \\ & 0.01 \% / 1 \end{aligned}$	1	0-3	0		5.16
n106	Modbus Slave Address			1	0 to 31	0		5.16
n107	Modus BPS Selection	Setting 0 1 2	BPS rate 2400 BPS 4800 BPS 9600 BPS	1	0-2	2		5.16
n108	Modbus Parity Selection	Setting 0 1 2	Parity No parity Even parity Odd parity	1	0-2	1		5.16
n109	Slip Compensation Gain			0.1 (\%)	0.0 to 9.9	0.0		5.23 .1
$n 110$	No-load Motor Current			1 (\%)	0 to 99	30		5.26
$n 111$	Slip Comp. Primary Delay Time Constant			0.1 (sec)	0.0 to 25.5	2.0		5.23 .1
$n 112$	Operator Connection Fault Detection Selection	$\begin{aligned} & 0: \text { Cycle } \\ & 1: \text { Imme } \end{aligned}$	le Stop lediate	1	0 or 1	0		5.16 .1
$n 113$	Frequency Agreed Detection Width			0.1 (Hz)	0.0 to 25.5	2.0		5.20
$n 114$	Local/Remote Changeover Fault Detection Selection	$\begin{aligned} & 0 \text { : Disa } \\ & 1 \text { : Enab } \end{aligned}$	bled bled	1	0 or 1	0		5.15 .1

Table A1-1. GPD 505 Parameters ($n X X X$) - Continued

Parameter NUMBER	FUNCTION NAME	DESCRIPTION	INCREMENT	SETting RANGE	FACTORY SETTING	USER SETTING	PARA. REF.
$n 115$	kVA Selection		1 (H)	00-35	See Note 3		Table A3-1
n116	CT/VT Selection	$\begin{aligned} & 0: C T \\ & 1: V T \end{aligned}$	1	0 or 1			
n117	Starting Point For OL at Low Frequency		0.1 (Hz)	0.0 to 6.0	6.0		
n118	Continuous Operation Level at 0 Hz		1 (\%)	25 to 100	50		

NOTES:

* () values are parameter settings after a 3-Wire reset code has been entered.

1. Initial value differs depending on V/f curve selected (n 010 setting). Values shown are initial values when $\boldsymbol{n} 010$ is set to " F".
2. To be accepted, the user setting must be between 10% and 120% of the drive's output current rating. See Table A3-1 and paragraph 5.26.
3. Initial value depends on GPD 505 capacity - see Table A3-1.
4. Range and increment may change due to a "custom" setting of $\boldsymbol{n} \mathbf{0 2 4}$ - see paragraph 5.8.
5. When a parameter number is enclosed in a shaded box with a \qquad symbol, that parameter can also be examined and set by means of the indicated Function LED.

Appendix 2. SPECIFICATIONS

Table A2-1. Standard Specifications

SECTION A. Input Voltage Related Specifications					
230V Class					
Input Power		Voltage : 3 Phase 200 / 208 / 220 / 230 VAC + 10\%, - 15\% Frequency: $50 / 60 \mathrm{~Hz}+/-5 \%$			
Output Power		Voltage : 0-230V (Output cannot be greater than input) Frequency: $0-400 \mathrm{~Hz}$ (V/Hz pattern selectable)			
MODEL NO. GPD505V-	RATED kVA	NOMINAL HP	100\% CONT. OUTPUT AMPS 1	RATED INPUT AMPS	MCCB RATED * AMPS (minimum)
A003	1.2	0.75	3.2	3.9	7
A006	2.3	$1 / 1.5$	6	7.2	15
A008	3.0	2	8	9.6	15
A011	4.2	3	11	13.2	15
A017	6.7	5	17.5	21	25
A027	9.5	7.5 / 10	27	33	40
A036	13.0	15	36	44	55
A054	19.0	20	54	65	75
A068	24	25	68	82	100
A080	30	30	80	88	105
A104	37	40	104	115	135
A130	50	50	130	143	165
A160	61	60	160	176	205
A192	70	75	192	212	245
A248	85	100	248	270	315
A312	110	125	312	344	400
460V Class					
Input Power		```Voltage: 3 Phase 380/400 / 415 / 440 / 460 VAC + 10%, - 15% Frequency:50 / 60 Hz +/- 5%```			
Output Power		Voltage : 0-460V (Output cannot be greater than input) Frequency: $0-400 \mathrm{~Hz}$ (V/Hz pattern selectable)			
MODEL NO. GPD505V-	RATED kVA	NOMINAL HP	100\% CONT. OUTPUT AMPS 1	RATED INPUT AMPS	MCCB RATED * AMPS (minimum)
B001	1.4	0.75	1.8	2.2	3
B003	2.6	$1 / 2$	3.4	4.1	7
B004	3.7	3	4.8	5.8	7
B008	6.1	5	8	9.6	15
B011	8.6	7.5	11	13.2	20
B014	11	10	14	16.8	20
B021	14	15	21	26	30
B027	21	20	27	33	40
B034	26	25	34	40	50
B041	31	30	41	46	55
B052	40	40	52	58	70
B065	50	50	65	72	85
B080	61	60	80	88	105
B096	73	75	96	106	125
B128	98	100	128	141	165
B180	130	$125 / 150$	180	198	230
B240	170	200	240	264	305
B302	230	250	302	330	380
B380	260	300	380	456	525
B506	340	350 / 400	506	608	700
B675	460	500	675	810	935

[^1](table continued on next page)
A2-1

Table A2-1. Standard Specifications (Continued)
SECTION B. ALL GPD 505s

Control Characteristics	Control Method	Sine Wave PWM	
	Frequency Regulation	Digital command: 0.01\%	$\begin{aligned} & \left(-10 \text { to } 40^{\circ} \mathrm{C}\right) \\ & \left(+14 \text { to } 104^{\circ} \mathrm{F}\right) \end{aligned}$
		Analog command: 0.1\%	$\begin{aligned} & \left(15 \text { to } 35^{\circ} \mathrm{C}\right) \\ & \left(59 \text { to } 95^{\circ} \mathrm{F}\right) \end{aligned}$
	Frequency Resolution	Digital Operator reference: 0.1 Hz Analog reference: $0.06 \mathrm{~Hz} / 60 \mathrm{~Hz}$	
	Output Frequency Resolution	0.01 Hz	
	Frequency Setting Signal	0 to 10 VDC (20K Ohms), 4-20mA (250 Ohms)	
	Accel / Decel Time	0.1 to 3600 sec (Accel / Decel time setting independently)	
	Braking Torque	Approximately 20\%	
	V/F Pattern Selection	15 Standard Patterns: 4 for general purpose; 4 for high starting torque; 4 for fans and pumps; 3 for constant horsepower. 1 Custom Pattern: defined by parameter settings.	
Protective Functions	Motor Overload Protection	Electronic thermal overload relay	
	Instantaneous Overcurrent	Motor coasts to a stop at approximately 180% rated current. (200\% for Model -A068 \& below, -B039 \& below)	
	Fuse Blown Protection	Motor coasts to a stop by blown fuse.	
	Overload	Motor coasts to a stop after 60 sec . of a 120% overload condition.	
	Overvoltage	Motor coasts to a stop if GPD 505 DC bus voltage exceeds 410 VDC (230 V unit), 820 VDC (460 V unit).	
	Undervoltage	Motor coasts to a stop if GPD 505 DC bus voltage drops to 190 VDC or below (230 V unit), 350 VDC or below (460 V unit).	
	Momentary Power Failure	Factory setting provides for motor to coast to a stop after momentary power failure of more than 15 ms . Can be reprogrammed to allow continuous operation (ride-through) during power failure of up to 2 seconds or longer (see Note 2).	
	Heatsink Overheat	Thermostat	
	Stall Prevention	Stall prevention at acceleration/deceleration and constant speed operation.	
	Ground Fault	Provided by electronic circuit.	
	Power Charge Indication	"CHARGE" lamp remains lit until bus voltage drops below 50 V .	

Table A2-1. Standard Specifications (Continued)
SECTION B. ALL GPD 505s (Continued)

Environmental Conditions	Location	Indoor (protected from corrosive gases and dust).
	Ambient Temperature	-10 to $40^{\circ} \mathrm{C}\left(+14\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ for NEMA 1 ; -10 to $45^{\circ} \mathrm{C}\left(+14\right.$ to $\left.113^{\circ} \mathrm{F}\right)$ for protected chassis
	Storage Temperature (Note 3)	-20 to $60^{\circ} \mathrm{C}\left(-4\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
	Humidity	95\% RH (no condensation)
	Vibration	1 G at less than 20 Hz , up to 0.2 G at 20 to 50 Hz .

NOTES:

1. Overload capacity: 120% of rated for 60 sec .
2. See paragraph 5.17 for detailed information.
3. Temperature during shipping. Storing in this temperature for a long period may deteriorate main circuit capacitor.

Appendix 3. CAPACITY RELATED PARAMETERS

If a Control PCB is changed, the next time the drive is powered up parameter $\boldsymbol{n} 115$ must be set to the appropriate value listed in Table A3-1 for the drive Model No. This will automatically program the values of all other parameters listed in the table to the factory settings for $t^{\text {r }}$ at particular drive rating.

Table A3-1. Parameters Related to GPD 505 Capacity

$\begin{aligned} & \text { MODEL } \\ & \text { NO. } \\ & \text { GPD505V- } \end{aligned}$	NOMINAL HP	OUTPUT AMPS	PARAMETER										
			$\begin{gathered} n 115 \\ (H) \end{gathered}$	$\begin{gathered} \text { n032 } \\ \text { (Amps) } \end{gathered}$	n050	$\begin{aligned} & \text { n053 } \\ & \text { (sec.) } \end{aligned}$	$\begin{gathered} \text { n054 } \\ \text { (\%) } \end{gathered}$	$\begin{aligned} & \text { n055 } \\ & \text { (sec.) } \end{aligned}$	$\begin{aligned} & \text { n068 } \\ & \text { (ohms) } \end{aligned}$	n069 (W)	$\begin{gathered} \text { n071 } \\ \text { (\%) } \end{gathered}$	$\begin{gathered} \text { n072 } \\ (\%) \end{gathered}$	n096
230 V													
A003	0.75	3.2	00	1.9	6 ($=15 \mathrm{kHz}$)	0.5	100	0.7	9.842	14	170	160	288.2
A006	1 \& 1.5	6	01	3.3	6 ($=15 \mathrm{kHz}$)	0.5	100	1.0	5.156	26	170	160	223.7
A008	2	8	02	6.2	6 ($=15 \mathrm{kHz}$)	0.5	100	1.0	1.997	53	170	160	169.4
A011	3	11	03	8.5	6 ($=15 \mathrm{kHz}$)	0.5	100	1.0	1.601	77	170	160	156.8
A017	5	17.5	04	14.0	6 ($=15 \mathrm{kHz}$)	0.5	100	2.0	0.837	112	170	160	122.9
A027	7.5 \& 10	27	05	19.6	4 ($=10 \mathrm{kHz}$)	0.7	100	2.0	0.434	172	170	160	94.75
A036	15	36	06	26.6	4 ($=10 \mathrm{kHz}$)	0.7	100	2.0	0.241	262	170	160	72.69
A054	20	54	07	39.7	$4(=10 \mathrm{kHz})$	0.7	100	2.0	0.250	245	170	160	70.44
A068	25	68	08	53.0	4 ($=10 \mathrm{kHz}$)	0.7	100	2.0	0.149	272	170	160	63.13
A080	30	80	09	65.8	6 ($=15 \mathrm{kHz}$)	1.0	100	2.0	0.110	505	120	120	57.87
A104	40	104	OA	77.2	6 ($=15 \mathrm{kHz}$)	1.0	100	2.0	0.086	538	120	120	51.79
A130	50	130	Ob	105.0	4 ($=10 \mathrm{kHz}$)	1.0	80	2.0	0.067	699	120	120	46.27
A160	60	160	OC	131.0	4 ($=10 \mathrm{kHz}$)	1.0	80	2.0	0.045	823	120	120	38.16
A192	75	192	Od	156.0	4 ($=10 \mathrm{kHz}$)	1.0	80	2.0	0.035	852	120	120	35.78
A248	100	248	OE	190.0	3 (= 8 kHz)	1.0	80	2.0	0.028	960	120	120	31.35
A312	125	312	OF	224.0	3 (= 8 kHz)	1.0	80	2.0	0.019	1200	120	120	23.10
460 V													
B001	0.75	1.8	20	1.0	6 ($=15 \mathrm{kHz}$)	0.5	100	1.0	38.198	14	170	160	57.6
B003	1 \& 2	3.4	21	1.6	6 ($=15 \mathrm{kHz}$)	0.5	100	1.0	22.459	26	170	160	447.4
B004	3	4.8	22	3.1	6 ($=15 \mathrm{kHz}$)	0.5	100	1.0	10.100	53	170	160	338.8
B008	5	8	23	7.0	6 ($=15 \mathrm{kHz}$)	0.5	100	2.0	3.293	77	170	160	313.6
B011	7.5	11	24	7.0	6 ($=15 \mathrm{kHz}$)	0.7	100	2.0	3.293	130	170	160	245.8
B014	10	14	25	9.8	6 ($=15 \mathrm{kHz}$)	0.7	100	2.0	1.734	193	170	160	189.5
B021	15	21	27	13.3	4 ($=10 \mathrm{kHz}$)	0.7	100	2.0	0.964	263	170	160	145.4
B027	20	27	28	19.9	6 ($=15 \mathrm{kHz}$)	0.7	100	2.0	1.001	385	170	160	140.9
B034	25	34	29	26.5	4 ($=10 \mathrm{kHz}$)	0.7	100	2.0	0.597	440	170	160	126.3
B041	30	41	2A	32.9	4 ($=10 \mathrm{kHz}$)	1.0	100	2.0	0.439	508	120	120	115.7
B052	40	52	2 b	38.6	3 (=8kHz)	1.0	100	2.0	0.344	586	120	120	103.6
B065	50	65	2 C	52.3	3 (= 8kHz)	1.0	100	2.0	0.292	750	120	120	92.54
B080	60	80	2d	65.6	2 (= 5 kHz)	1.0	100	2.0	0.178	925	120	120	76.32
B096	75	96	2 E	79.7	2 (= 5kHz)	1.0	100	2.0	0.140	1125	120	120	71.56

$\begin{aligned} & \text { MODEL } \\ & \text { NO. } \\ & \text { GPD505V- } \end{aligned}$	NOMINAL HP	OUTPUT AMPS	PARAMETER									
			n115 (H)	$\begin{gathered} \text { n033 } \\ \text { (Amps) } \end{gathered}$	n054	$\begin{aligned} & \text { n057 } \\ & \text { (sec.) } \end{aligned}$	$\begin{gathered} \text { n058 } \\ \text { (\%) } \end{gathered}$	$\begin{aligned} & \text { n059 } \\ & \text { (sec.) } \end{aligned}$	n073 (\%)	$\begin{gathered} \text { n074 } \\ (\%) \end{gathered}$	$n 097$	n116
460 V (Continued)												
B128	100	128	2 F	98.0	$2(=5 \mathrm{kHz})$	1.0	80	2.0	120	120	67.20	1
B180	125 \& 150	180	30	120.0	2 ($=5 \mathrm{kHz})$	1.0	80	2.0	120	120	46.20	1
B240	200	240	31	175.0	2 ($=5 \mathrm{kHz}$)	2.0	80	2.0	120	120	36.23	1
B302	250	302	32	245.0	$2(=5 \mathrm{kHz})$	2.0	80	2.0	120	120	30.13	1
B380	300	380	33	302.0	$9(=2.5 \mathrm{kHz}$ *)	2.0	80	2.0	120	120	30.57	1
B506	350 \& 400	506	34	368.0	$9\left(=2.5 \mathrm{kHz}{ }^{*}\right)$	2.0	80	2.0	120	120	27.13	1
B675	500	675	35	490.0	$9\left(=2.5 \mathrm{kHz}{ }^{*}\right)$	2.0	80	2.0	120	120	21.76	1

NOTES:
2.5 kHz is maximum carrier frequency - see paragraph 5.5 for detailed information.

Appendix 4. POWER CIRCUIT MODULE TESTING

DIODE MODULE

Measure the resistance across the module terminals with a volt-ohm meter or DMM. Set the meter at the X1 range. The measured resistance should be within the values listed in Table A4-1.

Table A4-1. Diode Module Resistances

RESISTANCE TEST FOR $3 \varnothing$ CONVERTER MODULES (BRIDGE RECT)

VOM RESISTANCE SCALE R x 1

+ IS THE POSITIVE POLARITY LEAD (2)
- IS THE NEGATIVE POLARITY LEAD
(1) Set meter to \rightarrow (diode drop) scale.
(2) The VOM red lead is not necessarily the positive potential in the resistance mode. For these tests the + lead refers to the positive potential. Make sure you know which polarity you have on your VOM.

Measure the resistance across the module terminals with a volt-ohm meter or DMM. Set the meter to the X1 range. Measured resistance should be within the values listed in Table A4-2.

Table A4-2. Transistor Module Resistances

+ ON	- ON	NORMAL READING (OHMS)	ABNORMAL READING (OHMS)
$\oplus 1$	T1		
$\oplus 1$	T2		
$\oplus 1$	T3		
T1	\ominus	INFINITE	0
T2	\ominus		
T3	\ominus		
T1	$\oplus 1$		
T2	$\oplus 1$	5 to 50 (VOM)	
T3	$\oplus 1$		0 or INFINITE
Θ	T1	0.3 to 0.7	
Θ	T2	(DMM) ${ }^{(1)}$	
\ominus	T3		

RESISTANCE TEST FOR $3 \varnothing$ TRANSISTOR MODULES

VOM RESISTANCE SCALE R x 1

+ IS THE POSITIVE POLARITY LEAD (2)
- IS THE NEGATIVE POLARITY LEAD
(1) Set meter to \rightarrow (diode drop) scale.
(2) The VOM red lead is not necessarily the positive potential in the resistance mode. For these tests the + lead refers to the positive potential. Make sure you know which polarity you have on your VOM.

Appendix 5. GPD 505 SPARE PARTS

Drive Model No. GPD505V-	Power Module Part No. 5P30-					Transistor Module Part No. 5P30-							Diode Module Part No. 5P50-					
	0174	0175	0178	0154	0155	0156	0157	0158	0159	0160	0161	0182	0477	0478	0479	0480	0481	0482
A003	1												No Diode Module in these Drive Model No's; diodes are contained in Power Module.					
A006		1																
A008		1																
A011			1															
A017				1														
A027				1														
A036					1								1					
A054						3								1				
A068							3								1			
A080								3					2					
A104								3					2					
A130									6							6		
A160										6							6	
A192										6							6	
A248											6						6	
A312												12						6

Drive Model No. GPD505V-	Power PCB Part No. 5P90-									Gate Drive PCB Part No. 5P90-					Control PCB Part No. 5P90-	
	0422	0423	0424	0425	0426	0427	0428	0429	0430	0410	0414	0415	0416	0417	0409	0406
A003	1														1	
A006		1													1	
A008			1												1	
A011				1											1	
A017					1										1	
A027						1									1	
A036							1								1	
A054								1							1	
A068									1						1	
A080										1						1
A104										1						1
A130											1					1
A160												1				1
A192													1			1
A248													1			1
A312														1		1

Drive Model No.	Cooling Fan Part No. 5P16-							DC Bus Fuse Part No. 5P17-											Control Fuse Part No. 5P17-	
GPD505V-	0057	0058	0059	0061	0050	0062	0051	0504	0505	0488	0480	0481	0482	0483	0484	0485	0486	0487	0500	0502
A003								1											1	
A006								1											1	
A008									1										1	
A011	1									1									1	
A017	1										1								1	
A027	1											1							1	
A036	2											1							1	
A054		2											1						1	
A068		2												1					1	
A080			1	1											1				1	
A104			1	1											1				1	
A130					3	1										3				1
A160					3	1										3				1
A192					3	1										3				1
A248					3	1											3			1
A312						1	3											3		1

IMPORTANT
Numbers represent total quantity used in one Drive. To determine adequate inventory of spare parts, MagneTek suggests using listed value for quantities 2 and below. If listed value is greater than 2 , factory suggests $1 / 3$ of total listed.

Drive Model No.	Power Module Part No. 5P30-				Transistor Module				Part No. 5P30-			Xstr/Heatsink Assy Part No. 5P30-			Diode Module Part No. 5P50-						
GPD505V-	0171	0162	0163	0164	0165	0166	0167	0168	0150	0169	0152	0288	0289	0290	0483	0484	0485	0486	0487	0488	0496
B001	1														No Diode Module in these Drive Model No's; diodes are contained in Power Module.						
B003	1																				
B004	1																				
B008		1																			
B011		1																			
B014			1												1						
B021				1											1						
B027					3											1					
B034					3											1					
B041					3											2					
B052						3										2					
B065						3										2					
B080							3										2				
B096							3											2			
B128								6											6		
B180									6										6		
B240										12										6	
B302											12									6	
B380												3									6
B506													3								6
B675														3							9

Drive Model No.	Power PCB Part No. 5P90-								Gate Drive PCB Part No. 5P90-										Control PCBPart No. 5P90-	
GPD505V-	0431	0432	0433	0435	0436	0437	0438	0439	0411	0412	0413	0418	0419	0420	0421	0465	0468	0471	0409	0406
B001	1																		1	
B003		1																	1	
B004			1																1	
B008				1															1	
B011					1														1	
B014						1													1	
B021							1												1	
B027								1											1	
B034								1											1	
B041									1											1
B052										1										1
B065											1									1
B080											1									1
B096											1									1
B128												1								1
B180													1							1
B240														1						1
B302															1					1
B380																1				1
B506																	1			1
B675																		1		1

IMPORTANT

Numbers represent total quantity used in one Drive. To determine adequate inventory of spare parts, MagneTek suggests using listed value for quantities 2 and below. If listed value is greater than 2 , factory suggests $1 / 3$ of total listed.

Drive Model No.	Cooling Fan Part No. 5P16-									DC Bus Fuse Part No. 5P17-										Control Fuse Part No. 5P17-		
GPD505V-	0057	0058	0059	0061	0060	0050	0062	0051	0064	0504	0488	0480	0489	0490	0491	0492	0477	0478	0479	0500	0502	0503
B001										1										1		
B003										1										1		
B004										1										1		
B008	1										1									1		
B011	1										1									1		
B014	1											1								1		
B021	2												1							1		
B027		2												1						1		
B034		2												1						1		
B041			1	1										1						1		
B052			1	1											1					1		
B065				1	2											1				1		
B080				1	2											1				1		
B096				1	2											1				1		
B128						3	1										3			1		
B180						3	1										3			1		
B240						3	1											3		1		
B302							1	3											3		1	
B380									3	No DC Bus Fuse in these Drive Model No's; fuses are contained in Transistor/Heatsink Assembly.											1	
B506									3													1
B675									3													1

IMPORTANT

Numbers represent total quantity used in one Drive. To determine adequate inventory of spare parts, MagneTek suggests using listed value for quantities 2 and below. If listed value is greater than 2 , factory suggests $1 / 3$ of total listed.

Appendix 6. GPD 505 DIMENSIONS

Table A6-1 lists dimensions for the GPD 505 in its standard enclosure. For information on other types of enclosures available, consult your MagneTek representative.

Table A6-1. GPD 505 Size and Weight

VOLTS	$\begin{aligned} & \text { MODEL } \\ & \text { NO. } \\ & \text { GPD505V- } \end{aligned}$	NOMINAL HP	ENCLOSURE TYPE	PHYSICAL DIMENSIONS (IN.)			MOUNTING DIM. (IN.)		$\begin{aligned} & \text { WEIGHT } \\ & \text { - (LB) } \end{aligned}$	HEAT LOSS (WATTS)		
				H	W	D	H1	W1		Heatsink	Internal	Total
$\begin{aligned} & 2 \\ & 3 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { A003 } \\ & \text { A006 } \\ & \text { A008 } \end{aligned}$	$\begin{gathered} 0.75 \\ 1 / 1.5 \\ 2 \end{gathered}$	NEMA 1	$\begin{aligned} & 11.02 \\ & 11.02 \\ & 11.02 \end{aligned}$	$\begin{aligned} & 5.51 \\ & 5.51 \\ & 5.51 \end{aligned}$	$\begin{aligned} & 6.30 \\ & 6.30 \\ & 6.30 \end{aligned}$	$\begin{aligned} & 10.47 \\ & 10.47 \\ & 10.47 \end{aligned}$	$\begin{aligned} & 4.96 \\ & 4.96 \\ & 4.96 \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 15 \\ & 25 \\ & 40 \end{aligned}$	$\begin{aligned} & 50 \\ & 65 \\ & 80 \end{aligned}$	$\begin{array}{r} 65 \\ 90 \\ 120 \end{array}$
	A011 A017	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	NEMA 1	$\begin{aligned} & 11.02 \\ & 11.02 \end{aligned}$	$\begin{aligned} & 5.51 \\ & 5.51 \end{aligned}$	$\begin{aligned} & 7.09 \\ & 7.09 \end{aligned}$	$\begin{aligned} & \hline 10.47 \\ & 10.47 \end{aligned}$	$\begin{aligned} & 4.96 \\ & 4.96 \end{aligned}$	$\begin{aligned} & \hline 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 80 \\ 135 \end{array}$	$\begin{aligned} & \hline 60 \\ & 80 \end{aligned}$	$\begin{aligned} & 140 \\ & 215 \end{aligned}$
	$\begin{aligned} & \hline \text { A027 } \\ & \text { A036 } \end{aligned}$	$\begin{gathered} 7.5 / 10 \\ 15 \end{gathered}$	NEMA 1	$\begin{aligned} & \hline 11.81 \\ & 11.81 \end{aligned}$	$\begin{aligned} & 7.87 \\ & 7.87 \end{aligned}$	$\begin{aligned} & 8.07 \\ & 8.07 \end{aligned}$	$\begin{aligned} & \hline 11.22 \\ & 11.22 \end{aligned}$	$\begin{aligned} & 7.32 \\ & 7.32 \end{aligned}$	$\begin{aligned} & \hline 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 210 \\ & 235 \end{aligned}$	$\begin{array}{r} 90 \\ 110 \end{array}$	$\begin{aligned} & 300 \\ & 345 \end{aligned}$
	$\begin{aligned} & \hline \text { A054 } \\ & \text { A068 } \\ & \text { A080 } \\ & \text { A104 } \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \\ & 30 \\ & 40 \end{aligned}$	NEMA 1	$\begin{aligned} & 14.96 \\ & 15.75 \\ & 24.02 \\ & 26.57 \end{aligned}$	$\begin{array}{r} 9.84 \\ 9.84 \\ 12.99 \\ 12.99 \end{array}$	$\begin{array}{r} \hline 8.86 \\ 8.86 \\ 11.22 \\ 11.22 \end{array}$	$\begin{aligned} & \hline 14.37 \\ & 14.37 \\ & 17.13 \\ & 17.13 \end{aligned}$	$\begin{array}{r} 9.29 \\ 9.29 \\ 10.83 \\ 10.83 \end{array}$	$\begin{aligned} & 24 \\ & 24 \\ & 71 \\ & 71 \end{aligned}$	$\begin{aligned} & 425 \\ & 525 \\ & 655 \\ & 830 \end{aligned}$	$\begin{aligned} & 160 \\ & 200 \\ & 230 \\ & 280 \end{aligned}$	$\begin{array}{r} 585 \\ 725 \\ 885 \\ 1110 \end{array}$
	$\begin{aligned} & \hline \text { A130 } \\ & \text { A160 } \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \end{aligned}$	Protected Chassis	$\begin{aligned} & 26.57 \\ & 26.57 \end{aligned}$	$\begin{aligned} & \hline 16.73 \\ & 16.73 \end{aligned}$	$\begin{aligned} & \hline 13.78 \\ & 13.78 \end{aligned}$	$\begin{aligned} & 25.59 \\ & 25.59 \end{aligned}$	$\begin{aligned} & 12.60 \\ & 12.60 \end{aligned}$	$\begin{aligned} & 134 \\ & 137 \end{aligned}$	$\begin{aligned} & 1050 \\ & 1250 \end{aligned}$	$\begin{aligned} & 500 \\ & 700 \end{aligned}$	$\begin{aligned} & 1550 \\ & 1950 \end{aligned}$
	$\begin{aligned} & \hline \text { A192 } \\ & \text { A248 } \\ & \text { A312 } \end{aligned}$	$\begin{gathered} \hline 75 \\ 100 \\ 125 \end{gathered}$	Protected Chassis	$\begin{aligned} & \hline 31.50 \\ & 31.50 \\ & 36.42 \end{aligned}$	$\begin{aligned} & 18.70 \\ & 18.70 \\ & 22.64 \end{aligned}$	$\begin{aligned} & 13.78 \\ & 13.78 \\ & 15.75 \end{aligned}$	$\begin{aligned} & 30.51 \\ & 30.51 \\ & 35.24 \end{aligned}$	$\begin{aligned} & 14.57 \\ & 14.57 \\ & 17.52 \end{aligned}$	$\begin{aligned} & \hline 176 \\ & 176 \\ & 298 \end{aligned}$	$\begin{aligned} & \hline 1550 \\ & 1950 \\ & 2300 \end{aligned}$	$\begin{array}{r} 750 \\ 1000 \\ 1300 \end{array}$	$\begin{aligned} & 1950 \\ & 2950 \\ & 3600 \end{aligned}$
$\begin{aligned} & 4 \\ & 6 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { B001 } \\ & \text { B003 } \end{aligned}$	$\begin{aligned} & 0.75 \\ & 1 / 2 \end{aligned}$	NEMA 1	$\begin{aligned} & 11.02 \\ & 11.02 \end{aligned}$	$\begin{aligned} & 5.51 \\ & 5.51 \end{aligned}$	$\begin{aligned} & 6.30 \\ & 6.30 \end{aligned}$	$\begin{aligned} & 10.47 \\ & 10.47 \end{aligned}$	$\begin{aligned} & 4.96 \\ & 4.96 \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & 50 \\ & 65 \end{aligned}$	$\begin{aligned} & 60 \\ & 85 \end{aligned}$
	$\begin{aligned} & \text { B004 } \\ & \text { B008 } \\ & \text { B011 } \end{aligned}$	$\begin{gathered} 3 \\ 5 \\ 7.5 \end{gathered}$	NEMA 1	$\begin{aligned} & \hline 11.02 \\ & 11.02 \\ & 11.02 \end{aligned}$	$\begin{aligned} & 5.51 \\ & 5.51 \\ & 5.51 \end{aligned}$	$\begin{aligned} & 7.09 \\ & 7.09 \\ & 7.09 \end{aligned}$	$\begin{aligned} & 10.47 \\ & 10.47 \\ & 10.47 \end{aligned}$	$\begin{aligned} & 4.96 \\ & 4.96 \\ & 4.96 \end{aligned}$	$\begin{array}{r} 9 \\ 10 \\ 10 \end{array}$	$\begin{array}{r} 30 \\ 80 \\ 120 \end{array}$	$\begin{aligned} & 80 \\ & 65 \\ & 80 \end{aligned}$	$\begin{aligned} & 110 \\ & 145 \\ & 200 \end{aligned}$
	$\begin{aligned} & \text { B014 } \\ & \text { B021 } \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	NEMA 1	$\begin{aligned} & 11.81 \\ & 11.81 \end{aligned}$	$\begin{aligned} & 7.87 \\ & 7.87 \end{aligned}$	$\begin{aligned} & 8.07 \\ & 8.07 \end{aligned}$	$\begin{aligned} & 11.22 \\ & 11.22 \end{aligned}$	$\begin{aligned} & 7.32 \\ & 7.32 \end{aligned}$	$\begin{aligned} & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 135 \\ & 240 \end{aligned}$	$\begin{array}{r} 85 \\ 120 \end{array}$	$\begin{aligned} & 220 \\ & 360 \end{aligned}$
	$\begin{aligned} & \text { B027 } \\ & \text { B034 } \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	NEMA 1	$\begin{aligned} & 14.96 \\ & 14.96 \end{aligned}$	$\begin{aligned} & 9.84 \\ & 9.84 \end{aligned}$	$\begin{aligned} & 8.86 \\ & 8.86 \end{aligned}$	$\begin{aligned} & 14.37 \\ & 14.37 \end{aligned}$	$\begin{aligned} & 9.29 \\ & 9.29 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 305 \\ & 390 \end{aligned}$	$\begin{aligned} & 150 \\ & 180 \end{aligned}$	$\begin{aligned} & 455 \\ & 570 \end{aligned}$
	$\begin{aligned} & \hline \text { B041 } \\ & \text { B052 } \\ & \text { B065 } \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \\ & 50 \end{aligned}$	NEMA 1	$\begin{aligned} & 24.02 \\ & 24.02 \\ & 30.91 \end{aligned}$	$\begin{aligned} & \hline 12.99 \\ & 12.99 \\ & 12.99 \end{aligned}$	$\begin{aligned} & \hline 11.22 \\ & 11.22 \\ & 11.22 \end{aligned}$	$\begin{aligned} & \hline 17.13 \\ & 17.13 \\ & 24.02 \end{aligned}$	$\begin{aligned} & \hline 10.83 \\ & 10.83 \\ & 10.83 \end{aligned}$	$\begin{array}{r} 68 \\ 68 \\ 106 \end{array}$	$\begin{aligned} & 465 \\ & 620 \\ & 705 \end{aligned}$	$\begin{aligned} & 195 \\ & 260 \\ & 315 \end{aligned}$	$\begin{array}{r} 660 \\ 880 \\ 1020 \end{array}$
	$\begin{aligned} & \hline \text { B080 } \\ & \text { B096 } \end{aligned}$	$\begin{aligned} & 60 \\ & 75 \end{aligned}$	NEMA 1	$\begin{aligned} & 30.91 \\ & 33.46 \end{aligned}$	$\begin{aligned} & 12.99 \\ & 12.99 \end{aligned}$	$\begin{aligned} & \hline 11.22 \\ & 11.22 \end{aligned}$	$\begin{aligned} & 24.02 \\ & 24.02 \end{aligned}$	$\begin{aligned} & \hline 10.83 \\ & 10.83 \end{aligned}$	$\begin{aligned} & \hline 106 \\ & 106 \end{aligned}$	$\begin{aligned} & 875 \\ & 970 \end{aligned}$	$\begin{aligned} & \hline 370 \\ & 415 \end{aligned}$	$\begin{aligned} & 1245 \\ & 1385 \\ & \hline \end{aligned}$
	$\begin{aligned} & \text { B128 } \\ & \text { B180 } \\ & \text { B240 } \\ & \text { B302 } \end{aligned}$	$\begin{gathered} 100 \\ 125 / 150 \\ 200 \\ 250 \end{gathered}$	Protected Chassis	$\begin{aligned} & 32.28 \\ & 32.28 \\ & 36.42 \\ & 36.42 \end{aligned}$	$\begin{aligned} & \hline 17.91 \\ & 17.91 \\ & 22.64 \\ & 22.64 \end{aligned}$	$\begin{aligned} & 13.78 \\ & 13.78 \\ & 14.76 \\ & 15.75 \end{aligned}$	$\begin{aligned} & 31.30 \\ & 31.30 \\ & 35.24 \\ & 35.24 \end{aligned}$	$\begin{aligned} & 13.78 \\ & 13.78 \\ & 17.52 \\ & 17.52 \end{aligned}$	$\begin{aligned} & 174 \\ & 176 \\ & 298 \\ & 320 \end{aligned}$	$\begin{aligned} & 1110 \\ & 1430 \\ & 1870 \\ & 2670 \end{aligned}$	$\begin{array}{r} 710 \\ 890 \\ 1160 \\ 1520 \end{array}$	$\begin{aligned} & 1820 \\ & 2320 \\ & 3030 \\ & 4190 \end{aligned}$
	$\begin{aligned} & \text { B380 } \\ & \text { B506 } \\ & \text { B675 } \end{aligned}$	$\begin{gathered} 300 \\ 300 / 400 \\ 500 \end{gathered}$	Protected Chassis	$\begin{aligned} & 57.09 \\ & 57.09 \\ & 62.99 \end{aligned}$	$\begin{aligned} & 37.40 \\ & 37.40 \\ & 37.80 \end{aligned}$	$\begin{aligned} & 17.13 \\ & 17.13 \\ & 17.91 \end{aligned}$	$\begin{aligned} & 55.12 \\ & 55.12 \\ & 61.02 \end{aligned}$	(1) (1) (1)	$\begin{aligned} & 794 \\ & 794 \\ & 926 \end{aligned}$	$\begin{aligned} & 3400 \\ & 4740 \\ & 6820 \end{aligned}$	$\begin{aligned} & \hline 1510 \\ & 2110 \\ & 2910 \end{aligned}$	$\begin{aligned} & 4910 \\ & 6850 \\ & 9730 \end{aligned}$

(1) 3 mounting holes top, 3 mounting holes bottom; consult MagneTek for horizontal hole spacing.

Appendix 7. DYNAMIC BRAKING CONNECTIONS

GENERAL. Dynamic braking (DB) enables the motor to be brought to a smooth and rapid stop. This is achieved by dissipating the regenerative energy of the AC motor across the resistive components of the Dynamic Braking option. For further details on dynamic braking operation, see the instruction sheet shipped with dynamic braking components.

The GPD505V-A003 thru -A036 and -B001 thru -B034 have an integral braking transistor; all higher rated drives require the use of external Braking Units (also referred to as Braking Modules) which provide the braking transistor circuitry. In addition, to make use of the Dynamic Braking function requires adding a heat sink mount Braking Resistor (for 3\% duty cycle; only available for the GPD505V-A003 thru -A011 and -B001 thru -B004) or external Braking Resistor Units (for 10\% duty cycle).

For Braking Resistor Units, interconnection to external control circuitry is necessary to ensure that braking resistor overheating is communicated to the drive as a fault condition.

Available MagneTek dynamic braking components are listed in Table A7-1.

Table A7-1. GPD 505 DB Components

For 230V GPD 505s						For 460V GPD 505s					
DRIVE GPD505V	BRAKING MODULE		$\begin{array}{\|c\|} \hline \text { HS RESISTOR (1) } \\ \hline \text { PART NO. } \\ \hline \end{array}$	BRAKING UNIT		DRIVE GPD505V.	BRAKING MODULE		HS RESISTOR (1) PART NO.	BRAKING UNIT	
	PART NO.	QTY Regd		PART NO.	QTY Regd		PART NO.	QTY		PART NO.	QTY Reqd
A003	N/A	-	50185430	5P41-0825	1	B001	N/A	-	50185530	5P41-0835	1
A006			50185431	5P41-0825	1	B003			50185531	5P41-0836	1
A008			50185432	5P41-0826	1	B004			50185531	5P41-0837	1
A011			50185433	5P41-0827	1	B008			N/A	5P41-0838	1
A017			N/A	5P41-0828	1	B011				5P41-0839	1
A027				5P41-0829	1	B014				5P41-0840	1
A036				5P41-0830	1	B021				5P41-0841	1
A054	50185034	1		5P41-0831	1	B027				5P41-0842	1
A068	50185035	1		5P41-0832	1	B034				5P41-0843	1
$\begin{array}{\|c\|} \hline \text { A080 } \\ \text { thru } \\ \text { A312 } \\ \hline \end{array}$	N/A	-		N/A	-	$\begin{aligned} & \text { B041 } \\ & \text { thru } \\ & \text { B302 } \end{aligned}$				N/A	-
						B380	50185239 (2)	1		5P41-0849	1
						B506	50185239 (2)	1		5P41-0849	1
						B605	50185239 (2)	2		5P41-0849	2

[^2]
INSTALLATION

This option should only be installed by a TECHNICALLY QUALIFIED INDIVIDUAL who is familiar with this type of equipment and the hazards involved.

WARNING
Hazardous voltage can cause severe injury or death. Lock all power sources feeding the drive in the "OFF" position.

CAUTION

Failure to follow these installation steps may cause equipment damage or personnel injury.

Preliminary Proecdures

1. Disconnect all electrical power to the drive.
2. Remove drive front cover.
3. Use a voltmeter to verify that voltage is disconnected from incoming power terminals.

Braking Resistor (Heat Sink Mount) Installation

1. Remove the drive from its mounting for access to the rear of the heat sink.
2. Mount the Braking Resistor on the back of the drive's heat sink, as shown in Figure A7-1.
3. Reinstall the drive in its mounting position.
4. Connect the leads from the Braking Resistor to drive terminals according to Figure A7-2.
5. Proceed to step 9 on page A7-7.

Figure A7-1. Mounting Braking Resistor on Heat SInk

Figure A7-2. Lead Connections For Braking Resistor (Heat Sink Mounted)

Braking Resistor Unit Installation (for GPD505V-A003 thru -A036, -B001 thru -B034)

IMPORTANT

Since the Braking Resistor Unit generates heat during dynamic braking operation, install it in a location away from other equipment which emits heat.

1. Mount the Braking Resistor Unit on a vertical surface, maintaining a minimum 1.18 inch $(30 \mathrm{~mm})$ clearance on each side and a minimum 5.91 inch (150 mm) clearance top and bottom.
2. Remove the Braking Resistor Unit front cover to access its terminal block. Connect the Braking Resistor Unit to the drive and to external control circuitry according to the chart at right and

Terminals	$\mathbf{B ,}, \mathbf{P}$	$\mathbf{1 , 2}{ }^{\text {* }}$
Lead Size (AWG)	$12-10$	$18-14$ *
Lead Type	600V etheylene propylene rubber insulated, or equivalent	
Terminal Screw	M4	

* Power leads for the Braking Resistor Unit generate high levels of electrical noise; these signal leads must be grouped separately.

3. Reinstall and secure Braking Resistor Unit front cover and drive front cover.
4. Proceed to step 9 on page A7-7

Figure A7-3. Wiring Braking Resistor Unit to Drive

Braking Unit(s) and Braking Resistor Unit(s) Installation (for GPD505V-A054 thru-A068, -B380 thru -B675)

IMPORTANT

Since the Braking Resistor Unit generates heat during dynamic braking operation, install it in a location away from other equipment which emits heat.

Select mounting locations for the Braking Unit(s) and Braking Resistor Unit(s) so that wiring between the drive and the (Master) Braking Unit, and between each Braking Unit and its associated Braking Resistor Unit, is less than 33 feet (10 m).

1. Mount the Braking Unit(s) and Braking Resistor Unit(s) on vertical surfaces. A Braking Unit requires a minimum 1.18 inch (30 mm) clearance on each side and a minimum 3.94 inch (100 mm) clearance top and bottom; a Braking Resistor Unit requires a minimum 1.97 inch (50 mm) clearance in back (i.e. use mounting spacers) and a minimum 7.87 inch (200 mm) clearance in front.
2. Remove DB units' front covers to access their terminals.
3. For 380/460V drives only: In each Braking Unit, set the PCB nominal line voltage jumper plug to the correct setting for the installation; this is factory set at the "460V" position.
4. If multiple Braking Units are being installed, the unit closest to the drive should have the SLAVE/MASTER jumper on its PCB set to the "MASTER" position (factory setting); all others must have this jumper moved to the "SLAVE" position.
5. If a single Braking Unit and Braking Resistor Unit are being installed, connect them to the drive and external control circuitry according to the chart below and Figure A7-4.
If two or more Braking Units and Braking Resistor Units are being installed, connect them to the drive and to external circuitry according to the chart below and Figure A7-5.

| UNIT | TERMINALS | $\begin{array}{c}\text { LEAD SIZE } \\ \text { (AWG) }\end{array}$ | $\begin{array}{c}\text { LEAD } \\ \text { TYPE }\end{array}$ | |
| :--- | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}TERMINAL

SCREWS\end{array}\right]\)

[^3]

Figure A7-4. Wiring Single Braking Unit and Braking Resistor Unit to Drive
6. The Braking Unit and Braking Resistor Unit MUST BE GROUNDED. Observe the following precautions:

- Use grounding leads conforming to your National Electrical Code.
- If the installation requires the Braking Resistor Unit to be used without its enclosure (with grounding terminal), ground it by attaching a ground lead at one of the mounting screws.
- Grounding resistance of the Braking Unit should be 100 ohms or less.

Figure A7-5. Wiring Multiple Braking Units and Braking Resistor Units to Drive
7. IMPORTANT: After wiring, test insulation resistance of each Braking Unit/Braking Resistor Unit with a 900V megger as follows:
a. Disconnect leads between the Braking Unit and the drive. If equipment with semiconductors is connected across terminals $1 \& 2$ of the Braking Unit, remove the wiring.
b. Connect common leads (jumpers) across Braking Unit terminals N, P, Po, and B, and across $3 \& 4$, as shown in Figure A7-6.
c. Measure the insulation resistance at points a, b, and c in Figure A7-6 with the megger.

Figure A7-6. Megger Testing Set-up

OPERATION CHECK

8. During dynamic braking operation, verify that the "BRAKE" lamp inside the Braking Unit will be lit.
9. During dynamic braking operations, ensure that the required deceleration characteristic is obtained. If not, contact MagneTek for assistance.
10. Reinstall and secure covers on the DB units and the drive.

During normal operation, the Braking Unit and the Braking Resistor Unit enclosures must be kept closed, since high voltage is applied to the dynamic braking circuit.

INDEX

- A
Accel Function LED \qquadAcceleration:
Stall Prev. Level During 5-44
Time 1 5-3
Time 2 5-3
Analog Monitor Gain 5-23
Analog Output, Multi-func.
(Term. AM-AC) 5-23
At Set Speed, Stall Prev. Level 5-45
Auto Analog Input Sel. 5-15
Auto Restart Attempts 5-5
Auto Restart, Fault Contact
Selection During 5-5
Auxiliary Input and Output
Power Option Devices 1-11
Base Block, External 5-29
Basic Programming 4-5
Bias, Freq. Ref. 5-13
BPS Selection, Modbus 5-21
Braking, DC Injection :
Current 5-8
Time at Start 5-8
Time at Stop 5-8
Braking, Dynamic A7-1
- C -
Carrier Frequency 5-6
Changeover, Local/Remote 5-19
Communication Error, Modbus Stop Method at A1-9
Compensation, Slip 5-44.2
Conformance to European EMC Directive 1-11
Control Circuit Wiring 1-8
Critical Freq. Rejection 5-7
CTNT Selection A1-11
Current, DC Inj. Braking 5-8
Current, Motor No-load 5-504-2, 4-3 Deactivation Time, Monentary
- D Power Loss Ride-thru 5-22.2
Decel Function LED 4-2, 4-3
Deceleration:
Stall Prevention During 5-44
Time 1 5-3
Time 2 5-3
Delay Time :
Feedback Loss Detection(PID)5-44
Inp. Ph. Loss Detection 5-56
Derivative Time (PID) 5-43
Detection, Fabk Loss (PID) 5-44
Det'n, Modbus Time Out A1-9
Detection Level: Input Phase Loss 5-56
Feedback Loss (PID) 5-54
Output Phase Loss 5-56
Overtorque (OL3) 5-39
Detection Time :
Overtorque (OL3) 5-39
Diagnostics - seeTroubleshooting
Digital Operator 2-2, 4-1
Digital Operator Display
Selection 5-9
Dimensions A6-1
Displays, Monitor 4.6
"Down Arrow" Key 4-1
DSPL key 4-1
Dynamic Braking Connections .. A7-1- E -
Elapsed Timer 1 A1-6
Elapsed Timer 2 A1-6
Elapsed Timer Selection A1-6
EMC Directive, European, Conformance to 1-11
Energy Saving :
Gain K2 5-11
Selection 5-11
Tuning 5-12
Volt. Lower Limit at 6 Hz 5-11
Volt. Lower Limit at 60 Hz 5-11
Enclosure A5-1
ENTER Key 4-1
Environment 1-1, A2-3
European EMC Directive, Conformance to 1-11
- F -
F / R Function LED 4-2, 4-3
Fault Contact Selection During Auto Restart 5-5
Fbias Function LED 4-2, 4-3
Feedback Calibration Gain (PID) 5-43
Feedback Loss (PID) :
Detection Selection 5-43
Detection Delay Time 5-43
Detection Level 5-43
Fgain Function LED 4-2, 4-3
FLA Function LED 4-2, 4-3
Fout Function LED 4-2
Display Selection 5-9
Fref Function LED 4-2
Frequency:
Base 5-54
Carrier 5-6
Detection 5-38
Max. Output 5-54
Meter 5-23
Min. Output 5-54
Min. Output Voltage 5-54
Output 4-2
Prohibited 5-7
Range 5-17
Ref. Retention (Up/Down
\& Sample/Hold) 5-18.1
Frequency Detection Multi- function Output 5-38
Frequency Reference 1 5-27
Frequency Reference 2 5-27
Frequency Reference 3 5-27
Frequency Reference 4 5-27

Frequency Reference :	Integral Value Limit (PID) 5-43
Bias 5-13	Integral Value Reset (PID) 5-44
Gain 5-13	Inverse PID 5-42
Jog 5-18.2, 5-27	Iout Function LED 4-2
Limit, Lower 5-17	Iron Loss 5-52
Limit, Upper 5-17	
Loss Detection, Operation Method for \qquad 5-18	
Resolution, Modbus 5-21	Jog Frequency Ref. 5-10,2, 5-27
Retention 5-18.1	
Setting Method From	
Digital Operator 2-2	Keypad - see Digital
Function LEDs 4-1, 4-2	Operator
	kVA Selection (n115) A3-1
- G	
Gain	L
Analog Monitor 5-23	Lag Filter Time, Output (PID) 5-43
Feedback Calib. (PID) 5-43	LEDs, Function 4-1, 4-2
Frequency Reference 5-13	LEDs, Status Indicator 4-1
Proportional (PID) 5-43	Limit, Integral Value (PID) 5-43
Torque Compensation 5-52	Line-to-Line Res., Motor 5-52
Gain K2, Energy Saving 5-11	Local/Remote Changeover 5-19
Grounding 1-10	LOCAL/REMOTE Key 4-1
	LOC./REM. Key Func.A1-2
- I -	Lower Limit, Freq. Ref. 5-17
Initialize Parameters 5-44.1	
Input Phase Loss Detection :	- M
Delay Time (SPi) 5-56	Main Circuit :
Level 5-56	Block Diagrams1-6, 1-7
Input Selection	Terminals 1-3, 1-5
Auto Analog 5-15	Input/Output Wiring 1-2
Manual Analog 5-15	Maintenance 7-1
Multi-function Contact 5-24	Manual Analog Input Sel. 5-15
Input Voltage A2-1	Max. Output Frequency 5-54
Inputs:	Max. Voltage 5-54
Analog 1-15	Max. Volt. Output Freq. 5-54
Frequency Reference 1-15	Mechanical resonance - see
Inspection (Receiving) 1-1	Critical Frequency Rejection
Installation 1-1	Mid. Frequency Voltage 5-54
Integral Time (PID) 5-42	Min. Base Block Time 5-29
	Min. Output Frequency 5-54

Min. Output Volt. Freq. 5-54
Miscellaneous Protective Features 5-22.1
Modbus :
BPS Selection 5-21
Freq. Resolution 5-21
Parity Selection 5-21
Stop Method at Comm. Error A1-9
Time Over Detection A1-9
Slave Address 5-21
Mode Selection 5-20
Model Numbers, Drive -v-,
A2-1, A5-1
Momentary Power Loss
Ride-through Selection ... 5-22.2
Monitor Displays 4-6
Motor :
Iron Loss 5-52
Line-to-Line Resistance 5-52
No-load Current 5-50
Overload Prot. Selection 5-50
Rated Current (FLA) 4-4
Rated Voltage 5-55
Switching - see Speed
Search
Wiring 1-2
Mounting :
Clearances 1-1
Dimensions A5-1
European EMC Conformance . 1-11Location1-1, A2-3
Multi-function Analog Output (AM-AC) $5-23$
Multi-func. Contact Input
Selection 5-24
Multi-func. Contact Output Selection 5-37
Multi-step Speed 5-27

INDEX - Continued

Nameplate, Motor 5-50
No-load Motor Current 5-50

- 0 -
5-32
Off-delay Timer
5-43
Offset (PID)
OH1 Stopping Method Selection A1-4
On-delay Timer 5-32
Operation Method for Freq.
Ref. Loss Detection 5-18
Operation Mode Selection 5-26,5-42
Operator Display 4-1
Options - see Peripheral Devices
Output, Analog, Multi-func. $5-23$
Output Frequency: Max. 5-54
Max. Voltage 5-54
Min. 5-54
Output Lag Filter Time (PID) 5-43
Output, Multi-func., Freq.
Detection 5-38
Output Phase Loss Detection :
Delay Time 5-56
Level 5-56
Output Selection, Multi-Func. Contact 5-37
Outputs
Analog 5-23
Contact 5-37
Overload Prot. Selection, Motor 5-50
Overtorque Detection (OL3) :
Function Selection 5-39
Level 5-39
Time 5-39
Parameters Range, Prohibited Freq. 5-7- P -
Factory Reset (Initialize) 5-43
List A1-1 RatingsProgramming4-5
Parity Selection, Modbus 5-21
Reduction Level During
Peripheral Devices:
AC reactor
\qquad1-11
Molded-case circuit
breaker (MCCB) 1-11, A2-1
Noise filter 1-11
PID Control 5-41
PID Disable (Input) 5-44
PID, Inverse 5-42
PID Selection 5-41
PID Settings 5-43
Potentiometer -ii-Power Loss Ride-thru Time5-22
Power Rotation A1-1
Power Supply 1-2, A2-1
Preset speeds - see
Multi-step Speeds
PRGM Function LED 4-1, 4-4
Prohibited Frequency 1 5-7
Prohibited Frequency 2 5-7
Proh. Frequency Range 5-7
Proportional Gain (PID) 5-42
Protection:
Overcurrent 6-1
Overheat 6-1
Overtemperature 6-1
Overtorque 5-39
Overvoltage 6-1
Thermal Overload 5-50
Undervoltage 6-1
Protective Functions, Miscellaneous 5-22.1
PWM Frequency - seeCarrier Frequency
- R -Receiving1-1
Rated Current, Motor $4-4,5-50$
$-v-, ~ A 2-1$Speed Search, V/f5-30
Reset Codes: 2-Wire, 3-Wire Initialization 5-44.1
RESET Key - seeSTOP/RESET Key
Resistance, Motor Line-to- Line 5-52
Reverse Run Prohibit A1-2
Ride-thru Method, Momen- tary Power Loss 5-22.2
Ride-thru Time, Power Loss 5-22.2
Rotation Direction A1-1
RUN Key 4-1
Running :
Forward 2-3
Reverse 2-3
Sample/Hold Function 5-33
Freq. Ref. Retention for 5-18
S-Curve Selection 5-4
Shock Resistance - seeS-Curve
Skip Frequency - seeProhibited Frequency
Slave Address, Modbus 5-21
Slip Compemsation 5-44.2
Soft Start - see S-Curve
Spare Parts A5-1
Specifications A2-1
Speed:
Agree 5-38
Range A2-1
Search 5-30

INDEX - Continued

Speed Search Level 5-30
Stall Prevention :
During Decel 5-46
Level At Set Speed 5-47
Level During Accel 5-46
Start-up, Initial 2-1
Start-up Procedure, Simplified

\qquad
Step Voltage, Tuning at 100\% Output Voltage (Energy Saving) 5-11
Step Voltage, Tuning at
5\% Output Voltage (Energy Saving) 5-11
Stop Method at Comm.
Error, Modbus A1-9
Stop Method Sel. (OH1) A1-4
Stopping :
Fast Stop 5-25
Stopping Method 5-48
STOP/RESET Key 4-1
Switching Frequency - see
Carrier Frequency

- T -

Temperature :
Ambient \qquad 1-1, A2-3
Storage A2-3

Terminals :

 Description \qquad $1-3,1-5,1-9$Functions 1-5, 1-9Screw Sizes 1-3
Thermal Overload Protection 5-50
Time of Average kW(Energy Saving)A1-9
Time Over Detection, Modbus A1-9
Torque :
Compensation Gain 5-52
Detection 5-39
V/f Pattern Setting 5-53
Troubleshooting 7-1
Tuning, Energy Saving 5-12

- U -
U-xx Parameters (Monitor Displays) 4-6
Up/Down Function, Freq.
Ref. Retention for 5-18
Upper Limit, Freq. Ref. 5-17
"Up Arrow" Key 4-1
- V -
V/f During Speed Search 5-31
V/F Function LED 4-2, 4-3
V/f Pattern Selection 5-52
Voltage :
Input 5-54, A2-1
Max. 5-54
Mid. Frequency 5-54
Motor Rated 5-55
Voltage Limit of Tuning (Energy Saving) 5-12
Voltage Lower Limit at 6Hz (Energy Saving) 5-12
Voltage Lower Limit at 60 Hz
(Energy Saving) 5-12
- W -
WeightA5-1
Wiring :
3-Wire Control 1-8, 1-16
Control Circuit 1-8
Diagrams 1-15, 1-17
Distances 1-2, 1-8
Main Circuit Input/Output 1-2

Please send information on the following:

- WinDDM (DriveDataManager For Windows)

A program to create and edit configuration files for MagneTek AC drives, and to upload/download configuration files for high-speed programming, production change, or backup.

- GPD 505 Programming Reference Guide

Free pocket-size booklet which provides the user a rapid reference for programming GPD 505 parameters.
Allow one week for delivery.

- Additional Copies of GPD 505 Technical Manual

Information will be provided on how to order copies of TM 4505.

Name

Position/Title

Company \qquad
Address
City \qquad State \qquad ZIP \qquad
Telephone () \qquad

GPD 505 : Model No. \qquad
Application : \qquad
\qquad
Purchased through (if known) : \qquad

Mail this form, or FAX (414) 782-3418

GPD 505

Data subject to change without notice. GPD, and Century are trademarks of MagneTek, Inc. Modbus Plus and ModConnect are trademarks of Modicon, Inc.
MagneTek
Drives and Systems
16555 West Ryerson Road
New Berlin, WI 53151
(800) 541-0939, (414) 782-0200, FAX (414) 782-3418

[^0]: * Note that pressing DSPL and ENTER keys simultaneously allows all parameter data to be read, but not set, while the the drive is running. While the drive is stopped, pressing DSPL and ENTER keys simultaneously immediately places the drive into program mode.

[^1]: * Molded-case circuit breaker must be rated for at least 18,000 RMS symmetrical amperes interrupting capacity.

[^2]: (1) When the heat sink mount Braking Resistor is used, DO NOT wire a Braking Unit to the drive.
 (2) Requires separate $380-460 \mathrm{VAC} / 1 / 50-60 \mathrm{~Hz}$ power supply for internal cooling fan.

[^3]: * Power leads for the Braking Resistor Unit generate high levels ofelectrical noise; these signal leads must be grouped separately.

